Author:
Samatov Bahrom,Turgunboeva Mohisanam
Abstract
This paper is devoted to solve l-capture and evasion problems for a differential game of two players, a pursuer and an evader, with inertial motions. We impose geometric constraints on controls of the players. Originally, we devise an l-approach strategy, on the basis of Chikrii’s method of resolving functions, for a pursuer and we present new sufficient conditions of l-capture. Here as l-capture, we refer the moment when a pursuer approaches an evader at the range l>0. In the evasion problem we define the strategy guaranteeing an evader to diverge from a pursuer at the distance greater than l>0. Besides that, new sufficient conditions of evasion have been shown.
Reference11 articles.
1. Isaacs R. Differential games. John Wiley and Sons, New York. 1965, 340 p.
2. Pontryagin L.S. Selected Works. MAKS Press, Moscow. 2014, 551 p.
3. Krasovsky N.N. Game-Theoretical Control Problems/ Subbotin A.I. Springer, New York. 1988, 517 p.
4. Petrosyan L.A. Games with “a Survival Zone”. Occasion L-catch / Dutkevich V.G. Vestnik Leningrad State Univ., 1969, Vol.3, № 13, p. 31-38.
5. Nahin P.J. Chases and escapes: The Mathematics of Pursuit and Evasion. Princeton University Press, Princeton. 2012, p. 272.