Investigating the Effect of Class Balancing Methods on the Performance of Machine Learning Techniques: Credit Risk Application

Author:

Milli Migraç Enes Furkan1ORCID,Aras Serkan2ORCID,Deveci Kocakoç İpek2ORCID

Affiliation:

1. İSTANBUL ÜNİVERSİTESİ

2. DOKUZ EYLÜL ÜNİVERSİTESİ

Abstract

Credit risk arises as a result of the failure of the loans given by banks to the customers to fulfill their obligations at the end of the specified term. Technological advances allow the use of machine learning methods in various sectors. These methods aim to facilitate the identification of customers at risk with the system adapted to the creditworthiness processes of banks. For this purpose, in order to make the most appropriate evaluation in the lending process of banks, re-sampling techniques to eliminate the problem of class imbalance encountered in unbalanced data sets were made balanced and their effects on machine learning were investigated. During the implementation phase, German, Australian and HMEQ credit data sets were used. Different machine learning classification methods such as Logistic Regression (LR), K-Narest Neighbor (KNN), Naive Bayes (NB), Support Vector Machines (SVM), Multilayer Perceptron (MLP), Decision Trees (DT), Random Forests (RF), Gradient Boosting Decision Trees (GBDT), Extremely Randomized Trees, Hard and Soft Voting were used to detect risky customers. The problem of class imbalance was balanced with resampling and hybrid techniques such as Random Oversampling (ROS), Random Undersampling (RUS), Balanced Bagging Classifier (BBC), SMOTE-Tomek Links and SMOTE-ENN. In this context, the performances of three different data sets were examined in four different scenarios. As a result of the study, the hybrid method, in which oversampling and undersampling methods are used together for the class balancing problem, showed the best classification performance among machine learning techniques.

Publisher

Dokuz Eylul University

Reference50 articles.

1. Akman, M., Genç, Y. ve Ankarali, H. (2011). Random Forests Yöntemi ve Saglik Alaninda Bir Uygulama/Random Forests Methods and an Application in Health Science. Türkiye Klinikleri Biyoistatistik. 3(1): 36.

2. Alam, T. M., Shaukat, K., Hameed, I. A., Luo, S., Sarwar, M. U., Shabbir, S. ve Khushi, M. (2020). An investigation of credit card default prediction in the imbalanced datasets. IEEE Access. 8: 201173-201198.

3. Barros, T. M., Souza Neto, P. A., Silva, I. ve Guedes, L. A. (2019). Predictive models for imbalanced data: A school dropout perspective. Education Sciences. 9(4): 275.

4. Batista, G. E., Bazzan, A. L. ve Monard, M. C. (2003, December). Balancing Training Data for Automated Annotation of Keywords: a Case Study. In WOB (ss. 10-18).

5. Bradley, A. P., Duin, R. P. W., Paclik, P. ve Landgrebe, T. C. W. (2006). Precision-Recall Operating Characteristic (P-ROC) Curves in Imprecise Environments. In 18th International Conference on Pattern Recognition (ICPR'06) (pp.123-127). Cambridge , United Kingdom.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3