Effectively Removing Methyl Orange From Aqueous Solutions Using Sulphuric Acid Modified Midyat Stone

Author:

Canpolat Mutlu1ORCID

Affiliation:

1. BATMAN ÜNİVERSİTESİ

Abstract

In this research, the efficiency of Midyat stone modified with sulphuric acid (H2SO4) in the removal of Methyl Orange (MO) from wastewater is evaluated. Various factors such as contact time, initial MO concentration, and adsorbent dosage were investigated to understand their influence on adsorption efficiency. The optimal conditions for MO removal were as follows: initial concentration 300 mg/L, contact time 70 min, adsorbent dosage 0.5 g. The surface properties of modified Midyat stone (MMS) were investigated using methods such as Fourier transform infrared spectroscopy (FT-IR) and Brunauer, Emmett, and Teller (BET). According to the findings, the isotherm data agreed with the Langmuir isotherm model, indicating both chemical sorption and irreversibility potential. The adsorption capacity of MO at 298, 308 and 318 K was calculated to be 50.02, 54.05 and 58.48 mg/g, respectively. In addition, adsorption kinetics data supported the pseudo-second-order (PSO) kinetic model for MO removal. The research identified MMS as a capable and adaptable substance for capturing MO ions from the aqueous environment due to its significant removal capacity, easy availability, and cost-effectiveness.

Publisher

Igdir University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3