Daily Average Discharge Prediction of Stream Gages with ANFIS Method: A Case for Kızılırmak
Author:
DEMİR Hilal Nur1ORCID, KORKMAZ Mehmet Seren2ORCID, ARIMAN Sema2ORCID
Affiliation:
1. DEVLET SU İŞLERİ 19. BÖLGE MÜDÜRLÜĞÜ 2. SAMSUN ÜNİVERSİTESİ, HAVACILIK VE UZAY BİLİMLERİ FAKÜLTESİ, METEOROLOJİ MÜHENDİSLİĞİ BÖLÜMÜ
Abstract
Akarsuların su potansiyelinin belirlenmesi için sezgisel tahmin modelleri sıklıkla kullanılmaktadır. Bu modellerden birisi olan Uyarlamalı Ağ Tabanlı Bulanık Mantık Çıkarım Sistemi (ing. kıs. ANFIS); yapay sinir ağlarının (YSA) öğrenme yeteneğini ve bulanık mantık (BM) yaklaşımının karar verme mekanizmasını kullanarak tahmin modeli geliştirmektedir. Bu çalışmada; Kızılırmak Nehri’nde yer alan iki adet Akım Gözlem İstasyonu’nda (AGİ) günlük ortalama debi, iki farklı ANFIS modeli ile tahmin edilmeye çalışılmıştır. AGİ’lere ait 2014-2021 yılları arasında gözlemlenmiş günlük ortalama debi verileri ile AGİ’lerin kurulu olduğu akarsu havzalarını temsil eden iki Meteoroloji Gözlem İstasyonu (MGİ)’ye ait günlük toplam yağış verileri mekansallaştırılarak modellerde kullanılmıştır. Membadaki Kızılırmak–Ahmethacı AGİ-1 için, 2 giriş 1 çıkış yaklaşımı, bu AGİ’nin mansabında kalan Kızılırmak–Bulakbaşı AGİ-2 için ise 3 giriş 1 çıkış yaklaşımı ile ANFIS modelleri kurgulanmıştır. Giriş verilerinden günlük toplam yağış, zaman ölçeğinde (t-2). gün, günlük ortalama debi, (t-1). gün alınmış ve çıkış olarak (t). güne ait ortalama debi tahmin edilmiştir. Modellerde verilerin %75’i eğitim, %25’i test verisi olarak kullanılmıştır. Kurallar oluşturulurken 3 farklı kümeleme yapılmış ve hedef değerin üyelik fonksiyonu belirlenmiştir. Her iki AGİ için eğitim ve test verilerinde 3 ayrı kümelemeye ait sonuçlar elde edilmiş ve modellerin başarımları için determinasyon katsayısı (R2) ve karekök ortalama hatası (RMSE) metrikleri kullanılmıştır. AGİ-1 için en iyi sonucu R2 = 0.9578, RMSE = 1.49 ile 3 kümelemeli model verirken AGİ-2 için en iyi sonucu; R2 = 0.976 ve RMSE = 2.20 ile yine 3 kümelemeli model vermiştir. Sonuç olarak ANFIS modeli, yüksek başarım ile günlük ortalama debiyi tahmin etmiştir.
Publisher
Igdir University
Reference30 articles.
1. Algancı, U., Coşkun, H. G., Eriş, E., Ağıralioğlu, N., Cığızoğlu, K., Yılmaz, L., & Toprak, F. (2010). Akım Ölçümleri Olmayan Akarsu Havzalarında Hidroelektrik Potansiyelin Belirlenmesine Yönelik Uzaktan Algılama ve CBS ile Hidrolojik Modelleme. Jeodezi ve Jeoinformasyon Dergisi (Sayı 101), TMMOB Harita ve Kadastro Mühendisleri Odası. 2. Altunkaynak, A. (2010). A predictive model for well loss using fuzzy logic approach. Hydrological Processes. 24. 2400–2404. https://doi.org/10.1002/hyp.7642 3. Altunkaynak, A., & Başakın, E. E. (2018). Zaman Serileri Kullanılarak Nehir Akım Tahmini ve Farklı Yöntemlerle Karşılaştırılması. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 11(1), 92–101. https://doi.org/10.18185/erzifbed.339781 4. Arslan, H., Üneş, F., Demirci, M., Taşar, B., & Yılmaz, A. (2020). Keban Baraj Gölü Seviye Değişiminin ANFIS ve Destek Vektör Makineleri ile Tahmini. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 3(2), 71–77. https://doi.org/10.47495/okufbed.748018 5. Asaad, M. N., Eryürük, Ş., & Eryürük, K. (2022). Forecasting of Streamflow and Comparison of Artificial Intelligence Methods: A Case Study for Meram Stream in Konya. Turkey. Sustainability, 14(10), 6319. https://doi.org/10.3390/su14106319
|
|