A Detailed Study of Solvent-Ligand Interactions and in Silico Biological Activity Predictions on Hydroxychloroquine

Author:

Bilkan Mustafa Tuğfan1ORCID

Affiliation:

1. TOKAT GAZİOSMANPAŞA ÜNİVERSİTESİ

Abstract

In this study, the effects of solvent environment changes, which are of critical importance in drug production processes, on the geometric structure and physicochemical parameters of the Hydroxychloroquine (HQC) molecule were investigated. For this purpose, optimized molecule structures were obtained using Density Functional Theory in vacuum and solvent environments. Based on the optimized structures, the molecule's thermochemical properties, atomic charges, and chemical reactivity data were calculated in vacuum and solvent environments. Moreover, the molecule's molecular electrostatic potential map and HOMO-LUMO contour maps were drawn. Vibrational frequencies, intensities, and assignments in solvent environments were determined. The characteristics of the hydrogen bonding interactions established between solvent molecules and HQC were determined in detail. ADME, toxicity, and drug-likeness predictions of the molecule were made. The study results showed that while the structural, chemical, and physical properties of the HQC molecule were severely affected when transferred to the solvent environment, they were less affected by the changes between solvent environments. In addition, very strong h-bond interactions are established between the solvent molecules and HQC.

Publisher

Igdir University

Reference46 articles.

1. Acerce, H. C., Hasgül, B., Karaman, S. (2022). COVID-19 Hastalığı ve Üst Solunum Yolu Enfeksiyonu Tanısı Alan Hastaların Hemogram Parametrelerininin Kıyaslanması. Gaziosmanpaşa Üniversitesi Tıp Fakültesi Dergisi, 3, 156

2. Altalhi, T.A., Alswat, K., Alsanie, W. F., Ibrahim, M. M., Aldalbahi, A. A., El-Sheshtawy H. S., (2021). Chloroquine and hydroxychloroquine inhibitors for COVID-19 sialic acid cellular receptor: Structure, Hirschfeld atomic charge analysis and solvent effect. Journal of Molecular Structure, 1228, 129459.

3. Amin, M., Abbas, G. (2021). Docking study of chloroquine and hydroxychloroquine interaction with RNA binding domain of nucleocapsid phospho-protein – an in silico insight into the comparative efficacy of repurposing antiviral drugs. Journal of Biomolecular Structure and Dynamics, 39, 4243.

4. Anonymous (2019)."Absolute lethal dose (LD100)". IUPAC Gold Book. International Union of Pure and Applied Chemistry. Archived from the original on 2019-07-01. Retrieved.

5. Anonymous (2021) "What is a LD50 and LC50?". OSH Answers Fact Sheets. Canadian Centre for Occupational Health and Safety.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3