Prediction of Biochemical Oxygen Demand in Wastewater Treatment Plants Using Artificial Neural Network and Regression Analysis

Author:

SİDAL FurkanORCID,ALTUN Yener1ORCID

Affiliation:

1. VAN YÜZÜNCÜ YIL ÜNİVERSİTESİ

Abstract

Atık su arıtma tesislerinde su kalitesini takip edip müdahale etmek, tesislerin yönetiminde önemli bir rol oynar. Atık su arıtma tesisleri yapılırken ve işletilirken, biyolojik oksijen ihtiyacı değerlerine gereksinim duyulmaktadır. Bu değerin ölçülmesi diğer parametrelere göre daha uzun sürelerde gerçekleşmekte ve deneylerin yapılması da zahmetli ve maliyetli olmaktadır. Bu çalışmada biyolojik oksijen değerinin, atık su arıtma tesislerinde kolayca ölçülebilen diğer parametreler aracılığıyla yapay sinir ağları ve çoklu regresyon analizi teknikleriyle tahmin edilmesi amaçlanmıştır. Çalışmada kullanılan ölçüm sonuçları 2021-2022 yılları arasında Van iline ait bir atık su arıtma tesisinde ölçülen verileri kapsamaktadır. Kullanılan tahmin girdi parametreleri pH, elektriksel iletkenlik, sıcaklık, çözünmüş oksijen, kimyasal oksijen ihtiyacı, askıda katı madde, toplam azot ve toplam fosfor değerleri bağımsız değişken ve biyolojik oksijen değeri ise bağımlı değişken olarak seçilmiştir. Yapılan tahminlerde yapay sinir ağı modeli için MAPE değeri %0.12, MAD değeri 0.04, R değeri %99.83 ve R2 değeri %99.68 olarak elde edilmiştir. Aynı şekilde çoklu regresyon analizi yöntemi ile BOİ tahmin modelinde MAPE değeri %0.68, MAD değeri 0.06, R değeri %96.40 ve R2 değeri %92.92 olarak bulunmuştur. Çalışmada elde edilen bulgular biyolojik oksijen değerinin kolayca ölçülebilen parametreler yardımıyla ileri beslemeli yapay sinir ağları ve doğrusal çoklu regresyon analizi teknikleri ile oluşturulmuş olan modeller kullanılarak tahmin edilmesi mümkündür. Her iki model karşılaştırıldığında ise yapay sinir ağları ile geliştirilmiş olan modelin çoklu regresyon analizi ile geliştirilmiş olan modele göre daha iyi performans sergilediği tespit edilmiştir.

Publisher

Igdir University

Reference23 articles.

1. Baki, O. T., Aras, E. (2018). Atık Su Arıtma Tesislerinde Biyokimyasal Oksijen İhtiyacının Farklı Regresyon Modelleriyle Tahmin Edilmesi. Engineering Sciences, 13(2), 96–105.

2. Caner, M., & Akarslan, E. (2009). Mermer Kesme İşleminde Spesifik Enerji Faktörünün ANFIS ve YSA Yöntemleri ile Tahmini. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 15(2), 221-226.

3. Çil, B. (2014). İstatistik (8. bs.). Ankara: Detay Yayıncılık.

4. Doğan, E., Ateş, A., Yılmaz, E. C., & Eren, B. (2008). Application of Artificial Neural Networks to Estimate Wastewater Treatment Plant Inlet Biochemical Oxygen Demand. Environmental Progress, 24(4), 439-446.

5. Erdem, F. (2021). Modeling Zinc Removal from Wastewater using Artificial Neural Networks (ANN). Avrupa Bilim ve Teknoloji Dergisi, 24(1), 335-342.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3