Evaluating the Effectiveness of Different Machine Learning Approaches for Sentiment Classification
Author:
BAYAT Seda1ORCID, IŞIK Gültekin1ORCID
Abstract
This study presents a comparison of four different machine learning algorithms for sentiment analysis on a small subset of the AR-P (Amazon Reviews - Polarity) dataset. The algorithms evaluated are multilayer perceptron (MLP), Naive Bayes, Decision Tree, and Transformer architectures. The results show that the Transformer-based DistilBERT model performed the best with an accuracy rate of 96.10%, while MLP had a better performance than the other remaining methods. Confusion matrices and ROC curves are provided to illustrate the results, and a comparison with previous studies is presented. The study concludes that the results can serve as a basis for future work, such as using larger datasets or comparing the performance of algorithms on different tasks. Overall, this study provides insights into the use of traditional machine learning and modern deep learning methods for sentiment analysis and their potential applications in real-world scenarios.
Publisher
Igdir University
Reference39 articles.
1. Abdi, A., Shamsuddin, S. M., Hasan, S., & Piran, J. (2019). Deep learning-based sentiment classification of evaluative text based on Multi-feature fusion. Information Processing & Management, 56(4), 1245-1259. 2. Ain, Q. T., Ali, M., Riaz, A., Noureen, A., Kamran, M., Hayat, B., & Rehman, A. (2017). Sentiment analysis using deep learning techniques: a review. International Journal of Advanced Computer Science and Applications, 8(6). 3. Alexandridis, G., Varlamis, I., Korovesis, K., Caridakis, G., & Tsantilas, P. (2021). A survey on sentiment analysis and opinion mining in greek social media. Information, 12(8), 331. 4. Al-Garadi, M. A., Yang, Y. C., Cai, H., Ruan, Y., O’Connor, K., Graciela, G. H., ... & Sarker, A. (2021). Text classification models for the automatic detection of nonmedical prescription medication use from social media. BMC Medical Informatics and Decision Making, 21(1), 1-13. DOI: 10.1186/s12911-021-01488-1 5. Balahur, A., Turchi, M., & Steinberger, R. (2013). Multilingual sentiment analysis using machine translation–based techniques. ACM Transactions on Intelligent Systems and Technology (TIST), 4(1), 1-26. DOI: 10.1145/2444776.2444777
|
|