Abstract
Görüntülerdeki nesnelerin yüksek doğrulukta tespit edilmesi gerçek zamanlı uygulamalar başta olmak üzere birçok uygulama alanı için önemli bir konudur. Evrişimli sinir ağları ise son yıllarda nesne tespiti uygulamalarında kullanılan ve yüksek doğrulukta başarılar elde edilebilen derin öğrenme tabanlı yöntemlerdir. Klasik Evrişimli sinir ağları orijinal görüntülerdeki nesneleri yüksek doğruluk tespit edebilmesine rağmen ağların FGSM, PGD ve APGD gibi çekişmeli saldırıların uygulandığı görüntülerde başarımları yetersiz kalabilmektedir. Bu problemin üstesinden gelmek için saldırılı görüntülerde nesne tespiti için farklı modeller ve ön işlemler geliştirilmektedir. Ancak saldırılı ve saldırısız durumlar için modellerin başarımları değişebilmektedir. Bu yüzden saldırının olup olmadığının tespit edilmesi ve duruma göre en başarılı modelin seçilmesi gerekmektedir. Bahsedilen problemi çözmek için bu çalışmada görüntülerde çekişmeli saldırı olup olmadığının evrişimli sinir ağları kullanarak tespit edilmesi gerçekleştirilmektedir. Çalışma kapsamında YOLO v5 ve Faster R-CNN modelleri transfer öğrenmeli ve transfer öğrenmesiz olarak çekişmeli saldırı tespiti görevi için eğitilmiştir. Deneysel sonuçlar transfer öğrenmeli Faster R-CNN modelinin 0.971 f1 skoru ile dört model arasından en başarılı sonucu elde ettiğini göstermektedir.
Reference32 articles.
1. Amit, Y., Felzenszwalb, P., & Girshick, R. (2020). Object detection. Computer Vision: A Reference Guide, 1-9.
2. Ayas, M. S., Ayas, S., & Djouadi, S. M. (2022, July). Projected Gradient Descent Adversarial Attack and Its Defense on a Fault Diagnosis System. In 2022 45th International Conference on Telecommunications and Signal Processing (TSP) (pp. 36-39). IEEE.
3. Balamurugan, T., & Gnanamanoharan, E. (2023). Brain tumor segmentation and classification using hybrid deep CNN with LuNetClassifier. Neural Computing and Applications, 35(6), 4739-4753.
4. Bochkovskiy, A., Wang, C. Y., & Liao, H. Y. M. (2020). Yolov4: Optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934.
5. Croce, F., & Hein, M. (2020, November). Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks. In International conference on machine learning (pp. 2206-2216). PMLR.