Automating Clinical Score Calculation within the Electronic Health Record

Author:

Aakre Christopher,Dziadzko Mikhail,Keegan Mark,Herasevich Vitaly

Abstract

Summary Objectives: Evidence-based clinical scores are used frequently in clinical practice, but data collection and data entry can be time consuming and hinder their use. We investigated the programmability of 168 common clinical calculators for automation within electronic health records. Methods: We manually reviewed and categorized variables from 168 clinical calculators as being extractable from structured data, unstructured data, or both. Advanced data retrieval methods from unstructured data sources were tabulated for diagnoses, non-laboratory test results, clinical history, and examination findings. Results: We identified 534 unique variables, of which 203/534 (37.8%) were extractable from structured data and 269/534 (50.4.7%) were potentially extractable using advanced techniques. Nearly half (265/534, 49.6%) of all variables were not retrievable. Only 26/168 (15.5%) of scores were completely programmable using only structured data and 43/168 (25.6%) could potentially be programmable using widely available advanced information retrieval techniques. Scores relying on clinical examination findings or clinical judgments were most often not completely programmable. Conclusion: Complete automation is not possible for most clinical scores because of the high prevalence of clinical examination findings or clinical judgments – partial automation is the most that can be achieved. The effect of fully or partially automated score calculation on clinical efficiency and clinical guideline adherence requires further study. Citation: Aakre C, Dziadzko M, Keegan MT, Herasevich V. Automating clinical score calculation within the electronic health record: A feasibility assessment. Appl Clin Inform 2017; 8: 369–380 https://doi.org/10.4338/ACI-2016-09-RA-0149

Funder

CTSA Grant

Publisher

Georg Thieme Verlag KG

Subject

Health Information Management,Computer Science Applications,Health Informatics

Reference34 articles.

1. Commentary: Prognostic models: clinically useful or quickly forgotten?

2. 2014 AHA/ACC/HRS Guideline for the Management of Patients With Atrial Fibrillation

3. Prevention of VTE in Nonsurgical Patients

4. Konstantinides S V, Torbicki A, Agnelli G, Danchin N, Fitzmaurice D, Galiè N, Gibbs JSR, Huisman M V, Humbert M, Kucher N, Lang I, Lankeit M, Lekakis J, Maack C, Mayer E, Meneveau N, Perrier A, Pruszczyk P, Rasmussen LH, Schindler TH, Svitil P, Vonk Noordegraaf A, Zamorano JL, Zompatori M, Task Force for the Diagnosis and Management of Acute Pulmonary Embolism of the European Society of Cardiology (ESC). 2014 ESC guidelines on the diagnosis and management of acute pulmonary embolism. Eur Heart J 2014; 35(43): 3033-3069, 3069a-3069k

5. Infectious Diseases Society of America/American Thoracic Society Consensus Guidelines on the Management of Community-Acquired Pneumonia in Adults

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3