The contribution of the Vaccine adverse event Text Mining system to the classification of possible Guillain-Barré Syndrome reports

Author:

Woo E. J.,Ball R.,Botsis T.

Abstract

Summary Background: We previously demonstrated that a general purpose text mining system, the Vaccine adverse event Text Mining (VaeTM) system, could be used to automatically classify reports of anaphylaxis for post-marketing safety surveillance of vaccines. Objective: To evaluate the ability of VaeTM to classify reports to the Vaccine Adverse Event Reporting System (VAERS) of possible Guillain-Barré Syndrome (GBS). Methods: We used VaeTM to extract the key diagnostic features from the text of reports in VAERS. Then, we applied the Brighton Collaboration (BC) case definition for GBS, and an information retrieval strategy (i.e. the vector space model) to quantify the specific information that is included in the key features extracted by VaeTM and compared it with the encoded information that is already stored in VAERS as Medical Dictionary for Regulatory Activities (MedDRA) Preferred Terms (PTs). We also evaluated the contribution of the primary (diagnosis and cause of death) and secondary (second level diagnosis and symptoms) diagnostic VaeTM-based features to the total VaeTM-based information. Results: MedDRA captured more information and better supported the classification of reports for GBS than VaeTM (AUC: 0.904 vs. 0.777); the lower performance of VaeTM is likely due to the lack of extraction by VaeTM of specific laboratory results that are included in the BC criteria for GBS. On the other hand, the VaeTM-based classification exhibited greater specificity than the MedDRA-based approach (94.96% vs. 87.65%). Most of the VaeTM-based information was contained in the secondary diagnostic features. Conclusion: For GBS, clinical signs and symptoms alone are not sufficient to match MedDRA coding for purposes of case classification, but are preferred if specificity is the priority. Citation: Botsis T, Woo EJ, Ball R. The contribution of the vaccine adverse event text mining system to the classification of possible Guillain-Barré syndrome reports. Appl Clin Inf 2013; 4: 88–99http://dx.doi.org/10.4338/ACI-2012-11-RA-0049

Publisher

Georg Thieme Verlag KG

Subject

Health Information Management,Computer Science Applications,Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3