5G Hybrid System Design and Energy Efficient Resource Allocation Deployment

Author:

Feng Hu , ,Andong Chen ,Hexing Yang ,Hongliu Zhang , , ,

Abstract

5G communication provide a promising platform for new, innovative and diverse enhanced mobile broadband (eMBB) and massive device connectivity applications, such as streaming media, machine vision and Internet of Things (IoT), real-time and dynamic data processing, intensive computation. However, 5G multimedia devices deployment relies on the coverage of base stations, which is inefficient and costly in wide-area coverage and physical penetration. In this paper, a 5G and wide-area Ad Hoc network fusion architecture is proposed to flexibly provide scalable 5G and extensible low-power devices interconnection liberated from geographical restriction, which consists of a low-power wide-area network and an edge processing gateway. Moreover, the intelligent edge gateway near a specific base station can support real-time ultra-high-definition video streams access and achieve traffic optimization by compressing, intelligent identification and preprocessing of the video streams to alleviate traffic congestion. The coverage capacity efficiency of wide-area Ad Hoc networks is restricted by the "funnel effect" in multihop cascading, and adaptive resource allocation strategies will present a promising approach to realize energy-efficient deployment. A non-convex optimization problem is formulated to maximize the energy-efficient deployment of Ad Hoc network. Then, a coordination and optimization strategy of internal resource allocation in deployed multihop nodes based on Lagrange relaxation algorithm was presented to solve the optimization problem. The actual system deployment and real measurement proved that the system function is running normally and stably. The experimental simulation test results show that the proposed 5G wide-area Ad Hoc network can effectively make up for the adaptive streaming needs of 5G coverage blind spots. Compared with static resource allocation, the proposed resource allocation and deployment scheme reduces energy consumption by 42.31%.

Publisher

Editura Electra

Subject

Electrical and Electronic Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3