Palaeoclimatic variability during last eight millennia from a morainal lake in Zanskar, northwest Himalaya, India

Author:

Phartiyal Binita,Nawaz Ali Sheikh,Sharma Anupam,Agrawal Shailesh,Nag Debarati,Tiwari Pooja,Kumar Mohan,Morthekai P.,Govil Pawan,Thakur Biswajeet,Bhushan Ravi,Jena Partha Sarathi,Shivam A.

Abstract

Centennial–scale palaeoenvironmental variability has been deduced during past eight millennia using multi–proxy study (textural analysis, environmental magnetic parameters, stable carbon isotopes, palynofacies and elemental concentration), from Khangok–Padam in Zanskar Valley, northwest Himalaya. The multi–proxy record from this morainal lake spanning last ~8200 cal years BP has revealed four hydroclimatic phases. The overall progressively improving hydroclimatic trend is indicated by multi proxy study: sediment size/texture (as a proxy for the energy condition and depositional environment), mineral magnetism (proxy for sediment flux or lithogenic input and lithologic variation), carbon isotope signature (δ13Corg) preserved in organic constituents of sediments (a proxy for palaeovegetation and climate change), elemental geochemistry (proxy for weathering and erosion) and selected samples for palynofacies data (a proxy for changes in biological organic matter). This improving hydroclimatic trend is however punctuated by an abrupt wet spell at ~6200–5200 cal years BP and relatively drier climate during the Little Ice Age between 1400 and 1900 CE. The main driving force implicated for the changes are seen to be the solar output variations. The area lying in a transitional climatic zone of NW Himalaya shows no emphatic record of the events like the 4200 cal. years BP, 2600 cal. years BP and Holocene Climatic Optima. Contrary to the earlier studies in the region (e.g., Tsokar and TsoMorari), our results show an improving hydroclimatic condition in this transition climatic zone between the Indian Summer Monsoon dominated Higher and westerly dominated Trans Himalaya.

Publisher

Birbal Sahni Institute of Palaeosciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3