Definitive endoderm differentiation is promoted in suspension cultured human iPS-derived spheroids more than in adherent cells

Author:

Yabe Shigeharu G.,Nishida Junko,Fukuda Satsuki,Takeda Fujie,Nashiro Kiyoko,Ibuki Masato,Okochi Hitoshi

Abstract

Human pluripotent stem cells (hPSCs), such as embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), are very attractive cell sources for the treatment of diabetes mellitus, because numerous cells can be obtained using their infinite proliferation potential to overcome the paucity of donor islets. Advances in differentiation protocols make it possible to generate glucose responsive hPSC-beta cells, which can ameliorate hyperglycemia in diabetic mice. These protocols have mainly been based on an adherent culture system. However, in clinical applications, suspension culture methods are more suitable for large-scale culture. There are reports that suspension culture and spheroid formation promote differentiation in various cell types, including hPSCs, but, to our knowledge, there are no reports comparing gene expression patterns between suspension and adherent cultured human iPSCs (hiPSCs) during definitive endoderm (DE) differentiation. In this study, we chose several stage marker genes, not only for DE but also for posterior epiblast and primitive streak, and we examined their time course expression in suspension and adherent cultures by quantitative PT-PCR (qPCR), western blot, flow cytometry and immunocytochemistry. Our results demonstrate that expressions of these marker genes are faster and more strongly induced in suspension culture than in adherent culture during the DE differentiation process, indicating that suspension culture favors DE differentiation.

Publisher

UPV/EHU Press

Subject

Developmental Biology,Embryology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3