Cell signaling molecules in hydra: insights into evolutionarily ancient functions of signaling pathways

Author:

Ghaskadbi Surendra

Abstract

Hydra, a Cnidarian believed to have been evolved about 60 million years ago, has been a favorite model for developmental biologists since Abraham Trembley introduced it in 1744. However, the modern renaissance in research on hydra was initiated by Alfred Gierer when he established a hydra laboratory at the Max Plank Institute in Göttingen in the late 1960s. Several signaling mechanisms that regulate development and pattern formation in vertebrates, including humans, have been found in hydra. These include Wnt, BMP, VEGF, FGF, Notch, and RTK signaling pathways. We have been using hydra to understand the evolution of cell signaling for the past several years. In this article, I will summarize the work on cell signaling pathways in hydra with emphasis on our own work. We have identified and characterized, for the first time, the hydra homologs of the BMP inhibitors Noggin and Gremlin, the vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF) and several receptor tyrosine kinases (RTKs). Our work, along with that of others, clearly demonstrates that these pathways arose early in evolution to carry out functions that were often quite different from their functions in more complex animals. Apart from providing insights into morphogenesis and pattern formation in adult, budding and regenerating hydra, these findings bring out the utility of hydra as a model system to study evolutionarily ancient, in contrast to recently acquired, functions of various biological molecules.

Publisher

UPV/EHU Press

Subject

Developmental Biology,Embryology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3