Analytical study of relation between Land surface temperature and Land Use/Land Cover using spectral indices: A case study of Chandigarh

Author:

Agrawal Yamini,Hina Pandey ,Poonam S. Tiwari

Abstract

Rapid urbanization is the major cause for Land Use and Land Cover changes globally. The urbanization alters the land surface dynamics and affects the surface temperature, which gives rise to urban heat island effect. In the present study, spatial correlation analysis has been done between Land Surface Temperature (LST) and Land Use and Land Cover (LULC) for the city of Chandigarh. The LST is retrieved from Landsat-8 thermal band using Mono-Window algorithm and shows 2.5°C increase of temperature from 2016 to 2022. The LULC has been derived using Maximum Likelihood Classifier (MLC) which shows an increase in built-up of 7.56% and decrease in forest cover by 32%. Spectral indices belonging to major LULC classes have been derived using Sentinel-2 optical bands and spatially correlated with LST using linear regression analysis. The results show a strong positive correlation (r=0.988) between built-up and LST and a negative correlation (r=-0.625) between urban vegetation cover and LST. The mean correlation coefficient for LST-NDVI for vegetation and forest cover, LST-NDWI for water bodies, LST-NDBI for built-up and LST-NBLI for bare land is -0.3, 0.116, 0.51 and 0.392 respectively. The results indicate that vegetation and water bodies mitigate the rise of LST, whereas built-up areas and bare lands sustain in the rise of LST. The statistical analysis will be helpful for policy makers and urban planners for prevention of further degradation of urban environment and surface dynamics.

Publisher

Indian Society of Geomatics (ISG)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3