Abstract
Small and medium enterprises face the challenge of obtaining start-up fund due to the strict rules and conditions set by banks and financial institutions. The plight yields to the growth in popularity of online peer-to-peer lending platforms which are an easier way to obtain loan as they have fewer rigid rules. However, high flexibility of loan funding in peer-to-peer lending comes with high default probability of loan funded to high-risk start-ups. An efficient model for evaluating credit risk of borrowers in peer-to-peer lending platforms is important to encourage investors to fund loans and justify the rejection of unsuccessful applications to satisfy financial regulators and increase transparency. This paper presents a supervised machine learning model with logistic regression to address this issue and predicts the probability of default of a loan funded to borrowers through peer-to-peer lending platforms. In addition, factors that affect the credit levels of borrowers are identified and discussed. The research shows that the most important features that affect probability of default are debt-to-income ratio, number of mortgage account, and Fair, Isaac and Company Score.
Reference22 articles.
1. Avery, R. B., Brevoort, K. P., & Canner, G. (2012). Does Credit Scoring Produce a Disparate Impact? Real Estate Economics, 40. https://doi:10.1111/j.1540-6229.2012.00348.x
2. Bachmann, A., Becker, A., Buerckner, D., Hilker, M., Kock, F., Lehmann, M., & Tiburtius, P. (2011). Online Peer-to-Peer Lending - A Literature Review. Journal of Internet Banking and Commerce, 16(23).
3. Blackburn, M. L., & Vermilyea, T. (2012). The prevalence and impact of misstated incomes on mortgage loan applications. Journal of Housing Economics, 21(2), 151-168. https://doi.org/10.1016/j.jhe.2012.04.003
4. Chowdhury, M. Z. I., & Turin, T. C. (2020). Variable selection strategies and its importance in clinical prediction modelling. Family Medicine and Community Health, 8(1), e000262. https://doi.org/10.1136/fmch-2019-000262
5. Coenen, L., Verbeke, W., & Guns, T. (2021). Machine learning methods for short-term probability of default: A comparison of classification, regression and ranking methods. Journal of the Operational Research Society, 73(1), 191-206. https://doi.org/10.1080/01605682.2020.1865847