Passive Nitrogen Oxides Removal from a Diesel-engine Exhaust Gas using a Biomass-Carbon Catalyst

Author:

Yakub Ibrahim

Abstract

Nitrogen oxides (NOx) removal from a diesel-engine exhaust gas is limited to the utilization of ammonia/urea as a reducing agent (SCR) which arose environmental concerns over the use of this chemical. Therefore, this study explored the potential of a sustainable NOx removal system by replacing ammonia with intrinsic reductants present in the exhaust gas such as hydrocarbons and carbon monoxide, and by application of cost-effective carbon-supported transitional metals catalyst. Copper-cerium catalyst supported over palm kernel shell activated carbon (Cu-Ce/PKS) was synthesized via deposition-precipitation method. The characterization shows that the catalyst has a considerably high surface area (though lower than the support). The high NOx removal by Cu-Ce/PKS in a passive catalytic reaction is attributed to the surface area provided by the carbon support, the low copper reducibility giving the low optimum operating temperature, and the synergistic effect between Cu and Ce resulting in the wide temperature window at low-temperature range. It is concluded that Cu-Ce supported over palm kernel shell activated carbon can be further developed to reduce NOx in a passive catalytic removal for a sustainable and cost-effective SCR system.  

Publisher

UNIMAS Publisher

Subject

Industrial and Manufacturing Engineering,General Business, Management and Accounting,Materials Science (miscellaneous),Business and International Management

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3