In Silico Testing of Some Protected Galactopyranose as SARS-CoV-2 Main Protease Inhibitors
-
Published:2022-10-31
Issue:2
Volume:9
Page:1281-1294
-
ISSN:2289-7771
-
Container-title:Journal of Applied Science & Process Engineering
-
language:
-
Short-container-title:J. Appl. Sci. Process Eng.
Author:
Azad Abul K.M.S.ORCID, Islam Md. NaimulORCID, Chowdhury Md. Atiquel IslamORCID, Kabir EmranulORCID
Abstract
An outbreak of novel Coronavirus disease (COVID-19 or 2019-nCoV) due to the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has already demonstrated a fatal death toll all over the world. To cure this viral infection, a number of compounds of different categories have been investigated in silico. Some of the compounds showed better binding energy with COVID-19-related proteins. However, until now there is no appropriate drug except a vaccine. It was found that many antifungal drugs are used for COVID-19 patients in hospitals. Many monosaccharide esters have been reported to have antifungal potential. Thus, in the present study, some protected galactopyranose esters are chosen for molecular docking with SARS-CoV-2 main proteases (PDB id: 7BQY and 6LU7). A docking study revealed that galactopyranose esters 5-8 have very good docking scores (-8.4 to -6.5 kcal/mol) compared to the standard drugs azithromycin, remdesivir, and hydroxychloroquine. To explain such good scores interaction between amino acid residues of proteins and compounds in their docked complexes are calculated and duly discussed in this study.
Publisher
UNIMAS Publisher
Subject
Industrial and Manufacturing Engineering,General Business, Management and Accounting,Materials Science (miscellaneous),Business and International Management
Reference64 articles.
1. [1] Peng, Z., Xing-Lou, Y., Xian-Guang, W., Ben, H., Lei, Z., & Wei, Z. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579(7798), 270-273. https://doi.org/10.1038/s41586-020-2012-7. 2. [2] Dhumad, A.M., Majeed, H.J., Harismah, K., & Zandi, H. (2021). In silico Approach on ribavirin inhibitors for COVID-19 main protease. Bioint. Res. Appl. Chem., 11(6), 13924-13933. https://doi.org/10.33263/BRIAC116.1392413933 3. [3] Rout, J., Swain, B.C., & Tripathy, U. (2022) In silico investigation of spice molecules as potent inhibitor of SARS-CoV-2, Journal of Biomolecular Structure and Dynamics, 40(2), 860-874, https://doi.org/10.1080/07391102.2020.1819879 4. [4] Rashdan, H.R.M, Abdelmonsef, A.H., Abou-Krisha, M.M., & Yousef, T.A. (2022). Synthesis and identification of novel potential thiadiazole based molecules containing 1,2,3-triazole moiety against COVID-19 main protease through structure-guided virtual screening approach. Bioint. Res. Appl. Chem., 12(6), 8258-8270. https://doi.org/10.33263/BRIAC126.82588270 5. [5] Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., et al. (2020). A novel Coronavirus from patients with pneumonia in China, 2019. New Engl. J. Med., 382, 727-733. https://doi.org/10.1056/NEJMoa2001017
|
|