Author:
Kuang Yong Ng ,Zalina Zainal ,Shamzaeffa Samsudin
Abstract
Unemployment, especially after the COVID-19 pandemic, is a critical issue for any country as it has economic and social ramifications. Consequently, forecasting unemployment becomes an essential task as it can guide government policy. Time series data are frequently influenced by outliers (unexpected events), and some outliers may exist with extreme observation to reduce the forecasting effectiveness of robust estimators. This study compared the performance of Autoregressive Integrated Moving Average (ARIMA), Seasonal Autoregressive Integrated Moving Average (SARIMA) and Generalised Autoregressive Conditional Heteroscedasticity (GARCH) models in modelling and forecasting unemployment rates during the COVID-19 pandemic among the ASEAN-5 countries. These countries include Malaysia, Singapore, Thailand, the Philippines and Indonesia. The monthly unemployment data from January 2010 to December 2021 were applied for all cases, except Thailand, until December 2020. Each adequate model from both forecasting mechanisms underwent forecasting. Their performance was compared based on root mean squared error (RMSE), mean absolute error (MAE), Theil inequality coefficient and symmetric mean absolute percentage error (SMAPE). Static forecasting from the ARIMA and SARIMA models was found to perform better than the GARCH model in modelling and forecasting the unemployment rate among ASEAN-5 countries during the pandemic period.
Subject
Strategy and Management,Economics and Econometrics,Finance,Business and International Management
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献