Abstract
Carbohydrate-based molecular scaffolding received significant interest due to its impact on the drug discovery and development in synthetic carbohydrate chemistry during the last couple of decades. In this respect, four glucose compounds in the furanose and pyranose forms with ester and ether functionality were selected for their structural, thermodynamic and chemical reactivity studies. PASS predication indicated that the glucose in the six-membered pyranose form was more prone to biological properties compared to their five-membered furanose form. Also, in the pyranose form acetate ester (3) had more potentiality than the ethyl ether (4). The HOMO-LUMO energy gaps were almost similar for both monosubstituted furanose and pyranose glucose indicating their almost similar reactivities. It was also inferred that these 6-O-substituted compounds followed Lipinski’s rule with the acceptable range of ADMET levels, and hence, safe from lethal proarrhythmic risks. Hopefully, these results can be used in the near future for their probable pharmaceutical use without any remarkable toxicity.
Subject
Industrial and Manufacturing Engineering,General Business, Management and Accounting,Materials Science (miscellaneous),Business and International Management