Abstract
Plastic waste is the third-largest waste source in the world, so it raises the world’s human health and environmental concerns. Replacing conventional petroleum plastic with bioplastic is an alternative way to minimise plastic wastes from human life and bioplastic is more environmentally friendly. Therefore, this research study aims to synthesise bioplastic from corn starch via gelatinization and study its characteristics. Different from other studies, in this study, new formulations of bioplastics with different ratios of corn starch to glycerol samples that are 1:0.5, 1:1, 2:1, and 2:2, namely Sets A, B, C, and D, respectively, were studied and compared. From the Fourier Transformation Infrared Spectroscopy analysis, the results show that all produced corn starch-based bioplastic samples had the four major plastic’s functional groups which indicated that they were categorized as polyester. Meanwhile, via thermal property analysis, all bioplastic samples could be thermally decomposed from 34 °C to 504 °C where their weight was reduced from 5 mg to 1 mg. Among the four bioplastic samples (Sets A to D) with different ratios of corn starch to glycerol, it was found that a ratio of corn starch and glycerol that was 1:0.5 (Set A) had more biodegradable characteristics and it had the lowest water holding capacity. From the results, Set A could only hold around 4.27 % of the water that could avoid interaction of water with the contents that were wrapped with. Besides, from the results, Set A could degrade better in soils, and dissolve more in ethanol, acetone, and oils when compared to other samples. Since the bioplastic can degrade naturally by the ethanol produced from bacteria in the soils under anaerobic reactions, thus Set A has the potential application to be used as a fertiliser coating to minimise the fertiliser release rate in regions under heavy rainfall.
Subject
Industrial and Manufacturing Engineering,General Business, Management and Accounting,Materials Science (miscellaneous),Business and International Management
Reference38 articles.
1. [1] Dilkes-Hoffman, L., Pratt, S., Lant, P., & Laycock, B. (2019). The role of biodegradable plastic in solving plastic solid waste accumulation Plastics to energy (pp. 469-505): Elsevier. https://doi.org/10.1016/B978-0-12-813140-4.00019-4
2. [2] El Kadi, S. (2010). Bioplastic production form inexpensive sources bacterial biosynthesis, cultivation system, production and biodegrability. USA: VDM (Verlag Dr. Muller) Publishing House.
3. [3] Villanueva, A., & Eder, P. (2014). End-of-waste criteria for waste plastic for conversion. Institute for Prospective Technological Studies. ISSN 1831-9424
4. [4] Barnes, D. K., Galgani, F., Thompson, R. C., & Barlaz, M. (2009). Accumulation and fragmentation of plastic debris in global environments. Philosophical transactions of the royal society B: biological sciences, 364(1526), 1985-1998. https://doi.org/10.1098/rstb.2008.0205
5. [5] Álvarez-Chávez, C. R., Edwards, S., Moure-Eraso, R., & Geiser, K. (2012). Sustainability of bio-based plastics: general comparative analysis and recommendations for improvement. Journal of cleaner production, 23(1), 47-56. https://doi.org/10.1016/j.jclepro.2011.10.003
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献