Modelling and Dynamic Simulation of One-Dimensional Isothermal Axial Dispersion Tubular Reactors with Power Law and Langmuir-Hinshelwood-Hougen Watson Kinetics

Author:

Williams Almoruf Olajide Fasola

Abstract

In this paper, the modelling, numerical lumping and simulation of the dynamics of one-dimensional, isothermal axial dispersion tubular reactors for single, irreversible reactions with Power Law (PL) and Langmuir-Hinshelwood-Hougen-Watson (LHHW)-type kinetics are presented. For the PL-type kinetics, first-order and second-order reactions are considered, while Michaelis-Menten and ethylene hydrogenation or enzyme substrate-inhibited reactions are considered for the LHHW-type kinetics. The partial differential equations (PDEs) developed for the one-dimensional, isothermal axial dispersion tubular reactors with both the PL and LHHW-type kinetics are lumped to ordinary differential equations (ODEs) using the global orthogonal collocation technique. For the nominal design/operating parameters considered, using only 3 or 4 collocation points, are found to adequately simulate the dynamic response of the systems. On the other hand, simulations over a range of the design/operating parameters require between 5 to 7 collocations points for better results, especially as the Peclet number for mass transfer is increased from the nominal value to 100. The orthogonal collocation models are used to carry out parametric studies of the dynamic response behaviours of the one-dimensional, isothermal axial dispersion tubular reactors for the four reaction kinetics. For each of the four types of reaction kinetics considered, graphical plots are presented to show the effects of the inlet feed concentration, Peclet number for mass transfer and the Damköhler number on the reactor exit concentration dynamics to step-change in the inlet feed concentration. The internal dynamics of the linear (or linearized) systems are examined by computing the eigenvalues of the linear (or linearized) lumped orthogonal collocation models. The relatively small order of the lumped orthogonal collocation dynamic models make them attractive and useful for dynamic resilience analysis and control system analysis/design studies.

Publisher

UNIMAS Publisher

Subject

Industrial and Manufacturing Engineering,General Business, Management and Accounting,Materials Science (miscellaneous),Business and International Management

Reference54 articles.

1. [1] Pereira, Carmo J. & Leib, T.M. (2019). Section 19. Reactors. In: Green, Don W., Southard, M.Z., editor. Perry's Chemical Engineers' Handbook; 9th. ed. New York, USA: McGraw-Hill.

2. Chemical reaction engineering;Levenspiel;3rd,1999

3. [3] Davis, M.E. & Davis, R.J.; (2003). Fundamentals of chemical reaction engineering, McGraw-Hill. ISBN 0486488551.

4. [4] Fogler, H.S. (2016). Elements of chemical reaction engineering. 5th ed. Prentice Hall. ISBN 0133887510.

5. [5] Coker, A. (2001). Modeling of chemical kinetics and reactor design. Gulf Professional Pub. ISBN 9780884154815.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3