Effect of Fibre Hybridization on Mechanical Properties of Nylon-Broom Grass/Root-Broom Grass Fibre Reinforced Hybrid Polypropylene Composites

Author:

Al Amin Md. Abdullah,Mahjabin Tasnim,Hasan Mahbub

Abstract

In the present research, nylon-broom grass and onion root-broom grass reinforced hybrid polypropylene composites were manufactured using a hot press machine. Three different levels of fibre loading (5, 10, and 15 wt.%) with fibre ratios of 1:1 were incorporated in the polypropylene matrix. Tensile, flexural, impact and hardness tests of the composites were subsequently carried out. The two combinations showed opposite trends for tensile strength and impact strength and similar trends for Young’s modulus, elongation, flexural properties and hardness. Tensile strength of the onion root containing composites increased with an increase of fibre loading, while in the nylon containing composites, tensile strength decreased with an increase in fibre loading. Their Young’s modulus increased and % elongation decreased with an increase in fibre content. Both flexural strength and flexural modulus increased with an increase in fibre content in both combinations. The impact strength of the onion root containing composites decreased with an increase in fibre loading, while the nylon containing composites showed the opposite trend. The hardness of both combinations increased with an increase in fibre content. The best set of properties were found at 15 wt% fibre loading in the nylon-broom grass-PP hybrid composite.

Publisher

UNIMAS Publisher

Subject

Industrial and Manufacturing Engineering,General Business, Management and Accounting,Materials Science (miscellaneous),Business and International Management

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3