Abstract
In this note, we study the Yang–Mills bar connection <inline-formula><tex-math id="M1">\begin{document}$ A $\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="JUSTC-2023-0136_M1.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="JUSTC-2023-0136_M1.png"/></alternatives></inline-formula>, i.e., the curvature of <inline-formula><tex-math id="M2">\begin{document}$ A $\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="JUSTC-2023-0136_M2.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="JUSTC-2023-0136_M2.png"/></alternatives></inline-formula> obeys <inline-formula><tex-math id="M3">\begin{document}$ \bar{\partial}_{A}^{\ast}F_{A}^{0,2} = 0 $\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="JUSTC-2023-0136_M3.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="JUSTC-2023-0136_M3.png"/></alternatives></inline-formula>, on a principal <inline-formula><tex-math id="M4">\begin{document}$ G $\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="JUSTC-2023-0136_M4.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="JUSTC-2023-0136_M4.png"/></alternatives></inline-formula>-bundle <inline-formula><tex-math id="M5">\begin{document}$ P $\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="JUSTC-2023-0136_M5.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="JUSTC-2023-0136_M5.png"/></alternatives></inline-formula> over a compact complex manifold <inline-formula><tex-math id="M6">\begin{document}$ X $\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="JUSTC-2023-0136_M6.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="JUSTC-2023-0136_M6.png"/></alternatives></inline-formula>. According to the Koszul–Malgrange criterion, any holomorphic structure on <inline-formula><tex-math id="M7">\begin{document}$ P $\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="JUSTC-2023-0136_M7.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="JUSTC-2023-0136_M7.png"/></alternatives></inline-formula> can be seen as a solution to this equation. Suppose that <inline-formula><tex-math id="M8">\begin{document}$ G = SU(2) $\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="JUSTC-2023-0136_M8.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="JUSTC-2023-0136_M8.png"/></alternatives></inline-formula> or <inline-formula><tex-math id="M9">\begin{document}$ SO(3) $\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="JUSTC-2023-0136_M9.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="JUSTC-2023-0136_M9.png"/></alternatives></inline-formula> and <inline-formula><tex-math id="M10">\begin{document}$ X $\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="JUSTC-2023-0136_M10.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="JUSTC-2023-0136_M10.png"/></alternatives></inline-formula> is a complex surface with <inline-formula><tex-math id="M11">\begin{document}$ H^{1}(X,\mathbb{Z}_{2}) = 0 $\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="JUSTC-2023-0136_M11.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="JUSTC-2023-0136_M11.png"/></alternatives></inline-formula>. We then prove that the <inline-formula><tex-math id="M12">\begin{document}$ (0,2) $\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="JUSTC-2023-0136_M12.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="JUSTC-2023-0136_M12.png"/></alternatives></inline-formula>-part curvature of an irreducible Yang–Mills bar connection vanishes, i.e., <inline-formula><tex-math id="M13">\begin{document}$ (P,\bar{\partial}_{A}) $\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="JUSTC-2023-0136_M13.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="JUSTC-2023-0136_M13.png"/></alternatives></inline-formula> is holomorphic.
Publisher
Journal of University of Science and Technology of China
Reference13 articles.
1. Dai B, Guan R. Transversality for the full rank part of Vafa–Witten moduli spaces. Comm. Math. Phys., 2022, 389: 1047–1060.
2. Donaldson S K. Anti self-dual Yang–Mills connections over complex algebraic surfaces and stable vector bundles. Proc. London Math. Soc., 1985, 50 (1): 1–26.
3. Donaldson S K, Kronheimer P B. The Geometry of Four-Manifolds. Oxford, UK: Oxford University Press, 1990 .
4. Huybrechts D. Complex Geometry: An Introduction. Berlin: Springer, 2005 .
5. Itoh M. Yang–Mills connections over a complex surface and harmonic curvature. Compositio Mathematica, 1987, 62: 95–106.