Molecular mechanism underlying ABC exporter gating: a computational study

Author:

Wang Zi,Liao Jielou,

Abstract

ATP-binding cassette (ABC) exporters are a class of molecular machines that transport substrates out of biological membranes by gating movements leading to transitions between outward-facing (OF) and inward-facing (IF) conformational states. Despite significant advances in structural and functional studies, the molecular mechanism underlying conformational gating in ABC exporters is not completely understood. A complete elucidation of the state transitions during the transport cycle is beyond the capability of the all-atom molecular dynamics (MD) method because of the limited time scale of MD. In the present work, a coarse-grained molecular dynamics (CG-MD) method with an improved sampling strategy is performed for the bacterial ABC exporter MsbA. The resultant potential of the mean force (PMF) along the center-of-mass (COM) distances, <i>d</i><sub>1</sub> and <i>d</i><sub>2</sub>, between the two opposing subunits of the internal and external gates, respectively, are obtained, delicately showing the details of the <inline-formula><tex-math id="M1">\begin{document}$ {\rm{OF}}\to {\rm{IF}} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="JUSTC-2022-0134_M1.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="JUSTC-2022-0134_M1.png"/></alternatives></inline-formula> transition occurring via an occluded (OC) state, in which the internal and external gates are both closed. The OC state has an important role in the unidirectionality of the transport function of ABC exporters. Our CG-MD simulations dynamically show that upon NBD dissociation, the opening of the internal gate occurs in a highly cooperative manner with the closure of the external gate. Based on our PMF calculations and CG-MD simulations in this paper, we proposed a mechanistic model that is significantly different from those recently published in the literature, shedding light on the molecular mechanism by which the ABC exporter executes conformational gating for substrate translocation.

Publisher

Journal of University of Science and Technology of China

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3