Author:
Long Huajun,Li Jie,Li Rui,Liu Xinfeng,Cheng Jingyuan, , ,
Abstract
Stroke can lead to the impaired motor function in patients’ lower limbs and hemiplegia. Accurate assessment of lower limb motor ability is important for diagnosis and rehabilitation. To digitalize such assessments so that each test can be traced back at any time and subjectivity can be avoided, we test how dual-modality smart shoes equipped with pressure-sensitive insoles and inertial measurement units can be used for this purpose. A 5 m walking test protocol, including the left and right turns, is designed. The data are collected from 23 patients and 17 healthy subjects. For the lower limbs’ motor ability, the tests are performed by two physicians and assessed using the five-grade Medical Research Council scale for muscle examination. The average of two physicians’ scores for the same patient is used as the ground truth. Using the feature set we developed, 100% accuracy is achieved in classifying the patients and healthy subjects. For patients’ muscle strength, a mean absolute error of 0.143 and a maximum error of 0.395 are achieved using our feature set and the regression method; these values are closer to the ground truth than the scores from each physician (mean absolute error: 0.217, maximum error: 0.5). We thus validate the possibility of using such smart shoes to objectively and accurately evaluate the muscle strength of the lower limbs of stroke patients.
Publisher
Journal of University of Science and Technology of China
Reference26 articles.
1. Feigin V L, Stark B A, Johnson C O, et al. Global, regional, and national burden of stroke and its risk factors, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. The Lancet Neurology, 2021, 20: 795–820.
2. National Center for Chronic Disease Prevention and Health Promotion. Division of nutrition, physical activity, and obesity. data, trend and maps. CDC, 2018. https://www.cdc.gov/nccdphp/dnpao/data-trends-maps/index.html.
3. Andrews A W, Bohannon R W. Short-term recovery of limb muscle strength after acute stroke. Archives of Physical Medicine and Rehabilitation, 2003, 84: 125–130.
4. Gregson J M, Leathley M J, Moore A P, et al. Reliability of measurements of muscle tone and muscle power in stroke patients. Age and Ageing, 2000, 29 (3): 223–228.
5. Mentiplay B F, Perraton L G, Bower K J, et al. Assessment of lower limb muscle strength and power using hand-held and fixed dynamometry: A reliability and validity study. PLoS One, 2015, 10: e0140822.