Author:
Ren Shujian,Zhang Chi,Zhang Rongjing,
Abstract
Different receptors have evolved in organisms to sense different stimuli in their surroundings. The interaction among the receptors can significantly increase sensory sensitivity and adaptation precision. To study the influence of interaction among different types of chemoreceptors on the adaptation rate in the bacterial chemotaxis signaling network, we systematically compared the adaptation time between the wild-type strain expressing mixed types of receptors and the mutant strain expressing only Tar receptors (namely, the Tar-only strain) under stepwise addition of different concentrations of L-aspartate using FRET (Förster resonance energy transfer) and bead assays. We find that the wild type exhibits faster adaptation than the mutant under the same concentration of saturated stimulus. In contrast, the wild type exhibits slower adaptation than the mutant under unsaturated stimuli that induce the same magnitude of response, and this is independent of the level of receptor expression. The same result is obtained for the network relaxation time by monitoring the steady-state rotational signal of the flagellar motors. By simulating bacterial chemotaxis with different adaptation rates in a stable gradient of chemoattractants, we confirm that the interaction of different types of receptors can effectively promote chemotaxis of <i>Escherichia coli</i> under a stable spatial gradient of attractants while ensuring minimum noise in the cell position distribution.
Publisher
Journal of University of Science and Technology of China