A coherent study of <i>e</i><sup>+</sup><i>e</i><sup>−</sup>→<i>ω</i>π<sup>0</sup>, <i>ω</i>π<sup>+</sup>π<sup>−</sup>, and <i>ωη</i>

Author:

Wu Yan,Zhou Qinsong,Yan Wenbiao,Huang Guangshun, , , ,

Abstract

In this work, a combined analysis is performed on the processes of <inline-formula><tex-math id="M7">\begin{document}$e^+e^-\to\omega\pi^0\pi^0$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="JUSTC-2023-0086_M7.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="JUSTC-2023-0086_M7.png"/></alternatives></inline-formula>, <inline-formula><tex-math id="M8">\begin{document}$e^+e^-\to\omega\pi^+\pi^-$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="JUSTC-2023-0086_M8.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="JUSTC-2023-0086_M8.png"/></alternatives></inline-formula>, and <inline-formula><tex-math id="M9">\begin{document}$e^+e^-\to\omega\eta$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="JUSTC-2023-0086_M9.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="JUSTC-2023-0086_M9.png"/></alternatives></inline-formula> to study possible <inline-formula><tex-math id="M10">\begin{document}$\omega$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="JUSTC-2023-0086_M10.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="JUSTC-2023-0086_M10.png"/></alternatives></inline-formula> excited states at approximately 2.2 GeV. The resonance parameters are extracted by simultaneous fits of the Born cross section line shapes of these processes. In the fit with one resonance, the mass and width are fitted to be <inline-formula><tex-math id="M11">\begin{document}$(2207\pm14)$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="JUSTC-2023-0086_M11.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="JUSTC-2023-0086_M11.png"/></alternatives></inline-formula> MeV<inline-formula><tex-math id="M12">\begin{document}$/c^2$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="JUSTC-2023-0086_M12.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="JUSTC-2023-0086_M12.png"/></alternatives></inline-formula> and <inline-formula><tex-math id="M13">\begin{document}$(104\pm16)$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="JUSTC-2023-0086_M13.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="JUSTC-2023-0086_M13.png"/></alternatives></inline-formula> MeV, respectively. The result is consistent with previous measurements. In the fit with two resonances, the mass and width for the first resonance are fitted to be <inline-formula><tex-math id="M14">\begin{document}$(2160\pm36)$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="JUSTC-2023-0086_M14.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="JUSTC-2023-0086_M14.png"/></alternatives></inline-formula> MeV<inline-formula><tex-math id="M15">\begin{document}$/c^2$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="JUSTC-2023-0086_M15.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="JUSTC-2023-0086_M15.png"/></alternatives></inline-formula> (solution I), <inline-formula><tex-math id="M16">\begin{document}$(2154\pm12)$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="JUSTC-2023-0086_M16.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="JUSTC-2023-0086_M16.png"/></alternatives></inline-formula> MeV<inline-formula><tex-math id="M17">\begin{document}$/c^2$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="JUSTC-2023-0086_M17.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="JUSTC-2023-0086_M17.png"/></alternatives></inline-formula> (solution II) and <inline-formula><tex-math id="M18">\begin{document}$(141\pm74)$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="JUSTC-2023-0086_M18.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="JUSTC-2023-0086_M18.png"/></alternatives></inline-formula> MeV (solution I), <inline-formula><tex-math id="M19">\begin{document}$(152\pm77)$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="JUSTC-2023-0086_M19.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="JUSTC-2023-0086_M19.png"/></alternatives></inline-formula> MeV (solution II), respectively. The mass and width for the second resonance are fitted to be <inline-formula><tex-math id="M20">\begin{document}$(2298\pm19)$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="JUSTC-2023-0086_M20.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="JUSTC-2023-0086_M20.png"/></alternatives></inline-formula> MeV<inline-formula><tex-math id="M21">\begin{document}$/c^2$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="JUSTC-2023-0086_M21.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="JUSTC-2023-0086_M21.png"/></alternatives></inline-formula> (solution I), <inline-formula><tex-math id="M22">\begin{document}$(2309\pm6)$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="JUSTC-2023-0086_M22.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="JUSTC-2023-0086_M22.png"/></alternatives></inline-formula> MeV<inline-formula><tex-math id="M23">\begin{document}$/c^2$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="JUSTC-2023-0086_M23.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="JUSTC-2023-0086_M23.png"/></alternatives></inline-formula> (solution II) and <inline-formula><tex-math id="M24">\begin{document}$(106\pm77)$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="JUSTC-2023-0086_M24.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="JUSTC-2023-0086_M24.png"/></alternatives></inline-formula> MeV (solution I), <inline-formula><tex-math id="M25">\begin{document}$(99\pm23)$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="JUSTC-2023-0086_M25.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="JUSTC-2023-0086_M25.png"/></alternatives></inline-formula> MeV (solution II), respectively. The result is consistent with the theoretical prediction of <inline-formula><tex-math id="M26">\begin{document}$\omega(4S)$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="JUSTC-2023-0086_M26.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="JUSTC-2023-0086_M26.png"/></alternatives></inline-formula> and <inline-formula><tex-math id="M27">\begin{document}$\omega(3D)$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="JUSTC-2023-0086_M27.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="JUSTC-2023-0086_M27.png"/></alternatives></inline-formula>. The intermediate subprocesses in <inline-formula><tex-math id="M28">\begin{document}$e^+e^-\to\omega\pi^+\pi^-$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="JUSTC-2023-0086_M28.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="JUSTC-2023-0086_M28.png"/></alternatives></inline-formula> are analyzed using the resonance parameters of the previous fits in this work. In the fit with one resonance, the fitting result of <inline-formula><tex-math id="M29">\begin{document}$\varGamma^{e^+e^-}_{{\rm{R}}}B_{{\rm{R}}}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="JUSTC-2023-0086_M29.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="JUSTC-2023-0086_M29.png"/></alternatives></inline-formula> is partially consistent with the previous result. In the fit with two resonances, the fitting result of <inline-formula><tex-math id="M30">\begin{document}$\varGamma^{e^+e^-}_{{\rm{R}}}B_{{\rm{R}}}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="JUSTC-2023-0086_M30.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="JUSTC-2023-0086_M30.png"/></alternatives></inline-formula> is of the same order of magnitude as the theoretical prediction. This work may provide useful information for studying the light flavor vector meson family.

Publisher

Journal of University of Science and Technology of China

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3