Pure state tomography with adaptive Pauli measurements

Author:

Meng Xiangrui,He Minggen,Yuan Zhensheng, ,

Abstract

Quantum state tomography provides a key tool for validating and fully exploiting quantum resources. However, current protocols of pure-state informationally-complete (PS-IC) measurement settings generally involve various multi-qubit gates or complex quantum algorithms, which are not practical for large systems. In this study, we present an adaptive approach to <inline-formula><tex-math id="M1">\begin{document}$N$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="JUSTC-2022-0037_M1.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="JUSTC-2022-0037_M1.png"/></alternatives></inline-formula>-qubit pure-state tomography with Pauli measurements. First, projective measurements on each qubit in the <i>Z</i>-direction were implemented to determine the amplitude of each base of the target state. Then, a set of Pauli measurement settings was recursively deduced by the <i>Z</i>-measurement results, which can be used to determine the phase of each base. The number of required measurement settings is <inline-formula><tex-math id="M2">\begin{document}$O(N)$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="JUSTC-2022-0037_M2.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="JUSTC-2022-0037_M2.png"/></alternatives></inline-formula> for certain quantum states, including cluster and <i>W</i> states. Finally, we numerically verified the feasibility of our strategy by reconstructing a 1-D chain state using a neural network algorithm.

Publisher

Journal of University of Science and Technology of China

Subject

Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Artificial intelligence (AI) for quantum and quantum for AI;Optical and Quantum Electronics;2023-06-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3