Author:
Wei Haoyang,Wei Xiangqian,Liu Siwei,Sun Weitao,Tu Yunlong,Wang Chengguang,Ma Longlong, , ,
Abstract
Lignocellulose biomass has been recognized as one of the most promising sources of low-cost and renewable biofuels, and its conversion into alternative fuels and valuable platform molecules has attracted widespread attention. The porous solid residue from lignocellulose biomass, which was pretreated by steam-stripping, is catalyzed by dilute sulfuric acid to form levulinic acid (LA). The process includes porous media diffusion, multicomponent reactive transport, liquid-solid interface reaction, and cellulose dissolution. Understanding the interactions between these complex physicochemical processes is the basis for optimizing the performance of the hydrolysis reaction. In this study, a porous reaction transport model based on the lattice Boltzmann method (LBM) was established to simulate the conversion of cellulose to LA which was catalyzed by dilute acid. The simulation results were compared with the existing experimental results to verify the accuracy of the model. The simulation results showed that temperature has a significant effect on hydrolysis and the highest carbon yield was obtained at 180 °C. Without considering the lignin reaction, the higher the sulfuric acid concentration, the better is the hydrolysis efficiency in the range of 4% – 8%. The influence of cellulose content and steam-stripping the residue porosity on the dissolution rate of cellulose was also evaluated. The average dissolution rate of cellulose is the highest within 75 min, when the porosity is 0.7 and the cellulose content is 50%.
Publisher
Journal of University of Science and Technology of China
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献