Alternative modified Cholesky decomposition of the precision matrix of longitudinal data

Author:

Lu Fei,Zeng Yuting,

Abstract

The correlation matrix might be of scientific interest for longitudinal data. However, few studies have focused on both robust estimation of the correlation matrix against model misspecification and robustness to outliers in the data, when the precision matrix possesses a typical structure. In this paper, we propose an alternative modified Cholesky decomposition (AMCD) for the precision matrix of longitudinal data, which results in robust estimation of the correlation matrix against model misspecification of the innovation variances. A joint mean-covariance model with multivariate normal distribution and AMCD is established, the quasi-Fisher scoring algorithm is developed, and the maximum likelihood estimators are proven to be consistent and asymptotically normally distributed. Furthermore, a double-robust joint modeling approach with multivariate Laplace distribution and AMCD is established, and the quasi-Newton algorithm for maximum likelihood estimation is developed. The simulation studies and real data analysis demonstrate the effectiveness of the proposed AMCD method.

Publisher

Journal of University of Science and Technology of China

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3