Affiliation:
1. Universität zu Köln
2. Universität Heidelberg
Abstract
Implicit measures are diagnostic tools to assess attitudes and evaluations that people cannot or may not want to report. Diagnostic inferences from such tools are subject to asymmetries. We argue that (causal) conditional probabilities p(AM+|A+) of implicitly measured attitudes AM+ given the causal influence of existing attitudes A+ is typically higher than the reverse (diagnostic) conditional probability p(A+|AM+), due to non-evaluative influences on implicit measures. We substantiate this argument with evidence for non-evaluative influences on evaluative priming—specifically, similarity effects reflecting the higher similarity of positive than negative prime-target pairs; integrativity effects based on primes and targets’ potential to form meaningful semantic compounds; and congruity proportion effects that originate in individuals’ decisional strategies. We also cursorily discuss non-evaluative influences in the Implicit Association Test (IAT). These influences not only have implications for the evaluative priming paradigm in particular, but also highlight the intricacies of diagnostic inferences from implicit measures in general.
Subject
Developmental and Educational Psychology,Social Psychology
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献