A practical software package for estimating the periodicities in time series by least-squares spectral analysis

Author:

Abbak Ramazan Alpay1ORCID

Affiliation:

1. Konya Teknik Üniversitesi

Abstract

The researchers investigate some phenomena by continuously observing physical variables, i.e., time series. Nowadays, the Least-Squares Spectral Analysis (LSSA) technique has been preferred for the analysis of time series to conduct more reliable analysis. This technique uses the least-squares principle to estimate the hidden periodicities in the time series. Based on the previous investigations, LSSA gives more reasonable results in the experimental time series that have disturbing effects such as the datum shifts, linear trend, unequally spaced data and etc. The LSSA method is a unique method that can overcome these problems without pre-processing the original series. However, a practical and user-friendly software package in C programming language is not available for scientific purposes to implement the LSSA method. In this paper, we review the computational scheme of the LSSA method, then a software (LSSASOFT) package in the C programming language is developed in the view of the simplicity of the method and compatibility of all types of data. Finally, LSSASOFT is applied in two sample studies for the determining hidden periods in the synthetic data and sea level observations. Consequently, the numerical results indicate that LSSASOFT is a useful tool that can efficiently predicting hidden periodicity for the experimental time series that have disturbing effects.

Publisher

International Journal of Engineering and Geoscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3