Free Fatty Acid as a Link in the Regulation of Hepatic Glucose Output by Peripheral Insulin

Author:

Rebrin Kerstin1,Steil Garry M1,Getty Lisa1,Bergman Richard N1

Affiliation:

1. Department of Physiology and Biophysics, University of Southern California School of Medicine Los Angeles, California

Abstract

Overproduction of glucose by the liver in the face of insulin resistance is a primary cause of hyperglycemia in non-insulin-dependent diabetes mellitus (NIDDM). However, mechanisms involved in control of hepatic glucose output (HGO) remain less than clear, even in normal individuals. Recent results have supported an indirect extrahepatic effect of insulin as the primary locus of insulin action to restrain HGO. One suggested extrahepatic site is the pancreatic ɑ-cell. To examine whether insulin's extrahepatic site is independent of the ɑ-cells, HGO suppression was examined independent of changes in glucagon secretion or insulin antagonism of glucagon action. Euglycemic glucose clamps (n = 40) with somatostatin infusion were performed in conscious dogs (n = 5). Paired experiments were conducted in which insulin was infused either portally (1.2, 3.0, 6.0 pmol · min−1 · kg−1) or peripherally at half the portal infusion rate (0.6, 1.5, 3.0 pmol · min−1 · kg−1). Additional zero and saturating portal-dose experiments (100 pmol · min−1 · kg−1) were also performed. For the paired experiments, portal insulin infusion resulted in portal insulin concentrations approximately two to three times higher than in the corresponding peripheral insulin infusion experiments, while at the same time peripheral insulin concentrations were approximately matched. Equal peripheral insulin concentration resulted in equivalent HGO suppression irrespective of the portal concentrations. Thus, insulin affects a signal at a peripheral site, other than ɑ-cell, that in turn suppresses hepatic glucose production. To investigate the nature of this signal, we measured alanine, lactate, and free fatty acids (FFAs). There was no clear relationship between alanine or lactate and HGO suppression; however, there was an extremely strong relationship between plasma FFAs and HGO both at steady state and during dynamic changes in insulin. These data suggest, but do not prove, that insulin acts to suppress HGO as follows: Insulin slowly traverses the capillary endothelium in adipose tissue; elevated insulin in adipose tissue interstdtium inhibits lipolysis, thus decreasing FFA levels; and decreased FFAs act as a signal to the liver to suppress endogenous glucose production.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 154 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3