Okadaic Acid, Vanadate, and Phenylarsine Oxide Stimulate 2-Deoxyglucose Transport in Insulin-Resistant Human Skeletal Muscle

Author:

Carey Julie O1,Azevedo John L1,Morris Patricia G1,Pories Walter J1,Dohm G Lynis1

Affiliation:

1. Departments of Biochemistry and Surgery, East Carolina University, School of Medicine Greenville, North Carolina

Abstract

In response to insulin, several proteins are phosphorylated on tyrosine and on serine/threonine residues. Decreased phosphorylation of signaling peptides by a defective insulin receptor kinase may be a cause of insulin resistance. Accordingly, inhibition of the appropriate phosphatases might increase the phosphorylation state of these signaling peptides and thereby elicit increased glucose transport. The purpose of this study was to examine the effect of the serine/threonine phosphatase inhibitor okadaic acid and the tyrosine phosphatase inhibitors phenylarsine oxide and vanadate on 2-deoxyglucose transport in insulin-resistant human skeletal muscle. All three phosphatase inhibitors stimulated 2-deoxyglucose transport in insulin-resistant skeletal muscle. These data suggest that these compounds have bypassed a defect in at least one of the signaling pathways leading to glucose transport. Furthermore, maximal transport rates induced by the simultaneous presence of insulin and phosphatase inhibitor in insulin-resistant muscle were equal to insulin-stimulated rates in lean control subjects. However, both vanadate alone and vanadate plus insulin stimulated 2-deoxyglucose transport significantly more in insulin-sensitive tissue than in insulin-resistant tissue. These results demonstrate that although vanadate is able to stimulate glucose transport in insulin-resistant muscle, it is not able to normalize transport to the same rate achieved in insulin-sensitive muscle.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3