Islet-Infiltrating Lymphocytes from Prediabetic NOD Mice Rapidly Transfer Diabetes to NOD-scid/scid mice

Author:

Rohane Patricia W1,Shimada Akira1,Kim Dewey T1,Edwards Cariel T1,Charlton Brett1,Shultz Leonard D2,Fathman C Garrison1

Affiliation:

1. Stanford University School of Medicine Stanford, California

2. The Jackson Laboratory Bar Harbor, Maine

Abstract

In an effort to study the development of diabetes in NOD mice, our laboratory developed a novel adoptive transfer model using NOD-scid/scid (NOD-scid) mice as recipients of islet-infiltrating lymphocytes from donor prediabetic female NOD mice. We first confirmed previous results that demonstrated that splenocytes of diabetic and prediabetic female NOD mice could transfer diabetes to NOD-scid mice. We demonstrated that the kinetics of disease transfer were dependent on the age of transferred lymphocytes and reiterated the kinetics of diabetes in conventional female NOD mice. We then demonstrated that islet-infiltrating lymphocytes from prediabetic female NOD mice could transfer diabetes. In contrast with the age-dependent transfer of diabetes seen using splenocytes, islet-infiltrating lymphocytes obtained from prediabetic female NOD mice aged ≥40 days rapidly transferred diabetes to NOD-scid recipients. The time required to transfer insulin-dependent diabetes mellitus (IDDM) using islet-infiltrating lymphocytes from young prediabetic mice (25 ± 9 days) was not statistically different from the time required to transfer IDDM using splenocytes from overtly diabetic mice (32 ± 5 days). Cotransfer of splenocyte cells or CD4+, but not CD8+ spleen cells, from 60- to 80-day-old prediabetic female NOD mice together with either splenocytes from diabetic mice or islet-infiltrating lymphocytes from prediabetic NOD mice delayed the rapid transfer of IDDM, suggesting that CD4+ cells mediated immunoregulation. Use of the NOD-scid islet-infiltrating lymphocyte-adoptive transfer model should help elucidate the pathophysiology of the early inflammatory events leading to insulitis and subsequent β-cell destruction. Use of the NOD-scid adoptive model in cotransfer experiments should help identify the immunoregulatory cells that delay development of IDDM in conventional NOD mice.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3