Estimation of β-Cell Sensitivity From Intravenous Glucose Tolerance Test C-Peptide Data: Knowledge of the Kinetics Avoids Errors in Modeling the Secretion

Author:

Toffolo Gianna1,De Grandi Fabio1,Cobelli Claudio1

Affiliation:

1. Department of Electronics and Informatics, University of Padua Padua, Italy

Abstract

Parametric models of insulin secretion are used to measure indexes of β-cell function from plasma C-peptide concentration during an intravenous glucose tolerance test (IVGTT). Since the models have been usually assessed against plasma C-peptide data, both secretory and kinetic parameters need to be simultaneously estimated. However, undesired compensations between the two sets of parameters may arise. In this study, in order to evaluate IVGTT insulin secretion models, we have analyzed IVGTT data from seven normal subjects for whom individual C-peptide kinetics were known from a separate experiment. Three different β-cell models have been examined: the minimal model Ml (Diabetes 37:223–231, 1988); a variation of a published model, M2 (Math Biosci 27:319–332, 1975); and a new one, M3. A two-compartment model was used to describe C-peptide kinetics. The results suggest the inadequacy of Ml since kinetic parameter estimates were consistently biased versus the known individual values, and systematic errors were present in the prediction of C-peptide data when kinetic parameters were fixed to the known individual values. M2 performs better than Ml since it reproduces C-peptide data satisfactorily when the individually known description of the kinetics is adopted. M3 retains the second-phase description of M2 but improves the description of first-phase release. M3 is thus proposed to reconstruct the insulin secretion time course and to estimate parameters of first and second-phase sensitivity to glucose. We also show the robustness of M3, i.e., standard values of C-peptide kinetic parameters can be used when individual values are not available without a loss of accuracy in the estimated secretion parameters. Finally, the shortcomings of using a simplified single-compartment description of C-peptide kinetics are discussed.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3