Long-Term Effects of Bariatric Surgery on Meal Disposal and β-Cell Function in Diabetic and Nondiabetic Patients

Author:

Camastra Stefania1,Muscelli Elza1,Gastaldelli Amalia2,Holst Jens J.3,Astiarraga Brenno1,Baldi Simona1,Nannipieri Monica1,Ciociaro Demetrio2,Anselmino Marco4,Mari Andrea5,Ferrannini Ele12

Affiliation:

1. Department of Internal Medicine, University of Pisa, Pisa, Italy

2. CNR Institute of Clinical Physiology, Pisa, Italy

3. Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark

4. Division of Bariatric Surgery, Santa Chiara Hospital, Pisa, Italy

5. CNR Institute of Biomedical Engineering, Padua, Italy.

Abstract

Gastric bypass surgery leads to marked improvements in glucose tolerance and insulin sensitivity in obese type 2 diabetes (T2D); the impact on glucose fluxes in response to a physiological stimulus, such as a mixed meal test (MTT), has not been determined. We administered an MTT to 12 obese T2D patients and 15 obese nondiabetic (ND) subjects before and 1 year after surgery (10 T2D and 11 ND) using the double-tracer technique and modeling of β-cell function. In both groups postsurgery, tracer-derived appearance of oral glucose was biphasic, a rapid increase followed by a sharp drop, a pattern that was mirrored by postprandial glucose levels and insulin secretion. In diabetic patients, surgery lowered fasting and postprandial glucose levels, peripheral insulin sensitivity increased in proportion to weight loss (∼30%), and β-cell glucose sensitivity doubled but did not normalize (compared with 21 nonsurgical obese and lean controls). Endogenous glucose production, however, was less suppressed during the MMT as the combined result of a relative hyperglucagonemia and the rapid fall in plasma glucose and insulin levels. We conclude that in T2D, bypass surgery changes the postprandial response to a dumping-like pattern and improves glucose tolerance, β-cell function, and peripheral insulin sensitivity but worsens endogenous glucose output in response to a physiological stimulus.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3