Microvascular Blood Flow, Volume, and Velocity Measured by Laser Doppler Techniques in IDDM

Author:

Rendell Marc1,Bergman Tom1,O'Donnell Greg1,Drobny Ed1,Borgos John1,Bonner Robert F1

Affiliation:

1. Creighton Diabetes Center, Omaha, Nebraska; TSI, Inc. St. Paul, Minnesota Division of Research Services, Biomedical and Instrumentation Branch, National Institutes of Health Bethesda, Maryland

Abstract

A laser Doppler device with the capability to simultaneously measure skin blood flow, microvascular volume, and erythrocyte velocity was used to assess blood flow changes in 35 insulin-dependent diabetes mellitus (IDDM) subjects, mean age 33 ± 1 yr, with average duration of diabetes 14 ± 1 yr, and in a nondiabetic control group. Blood flow was determined at 35 and 44°C at several sites on the upper and the lower extremities with a temperature-regulated probe. Blood flow was highest at both temperatures on the pulps of the index finger and the first toe, regions of high density of arteriovenous anastomoses. There was significantly greater blood flow at most locations for the nondiabetic than the diabetic group at 35°C, and the differences between the two groups were substantially larger at 44°C. At 44°C, blood flow in the control group was ∼40% greater in the upper extremity and 50% greater in the lower extremity than it was in the diabetic subjects. The differences were attributed to decreases of both microvascular volume and velocity in the diabetic group. In the upper extremity, volumes in the diabetic patients were 10–15% lower and velocities 10–40% lower than in the nondiabetic subjects. In the lower extremity, volumes were 20–25% lower and velocities 40–50% lower. We conclude that laser Doppler techniques can be used to assess microvascular changes in the skin of diabetic patients. This approach may be useful to evaluate and model diabetic microangiopathy.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3