Long-Range Enhancers Are Required to Maintain Expression of the Autoantigen Islet-Specific Glucose-6-Phosphatase Catalytic Subunit–Related Protein in Adult Mouse Islets In Vivo

Author:

Wang Yingda1,Flemming Brian P.1,Martin Cyrus C.1,Allen Shelley R.1,Walters Jay2,Oeser James K.1,Hutton John C.2,O'Brien Richard M.1

Affiliation:

1. Department of Molecular Physiology and Biophysics, Vanderbilt University Medical School, Nashville, Tennessee

2. Barbara Davis Center for Childhood Diabetes, University of Colorado at Denver and Health Sciences Center, Aurora, Colorado

Abstract

OBJECTIVE—Islet-specific glucose-6-phosphatase catalytic subunit–related protein (IGRP) is selectively expressed in islet β-cells and is a major autoantigen in both mouse and human type 1 diabetes. This study describes the use of a combination of transgenic and transfection approaches to characterize the gene regions that confer the islet-specific expression of IGRP. RESEARCH DESIGN AND METHODS—Transgenic mice were generated containing the IGRP promoter sequence from −306, −911, or −3911 to +3 ligated to a LacZ reporter gene. Transgene expression was monitored by 5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside staining of pancreatic tissue. RESULTS—In all the transgenic mice, robust LacZ expression was detected in newborn mouse islets, but expression became mosaic as animals aged, suggesting that additional elements are required for the maintenance of IGRP gene expression. VISTA analyses identified two conserved regions in the distal IGRP promoter and one in the third intron. Transfection experiments demonstrated that all three regions confer enhanced luciferase reporter gene expression in βTC-3 cells when ligated to a minimal IGRP promoter. A transgene containing all three conserved regions was generated by using a bacterial recombination strategy to insert a LacZ cassette into exon 5 of the IGRP gene. Transgenic mice containing a 15-kbp fragment of the IGRP gene were then generated. This transgene conferred LacZ expression in newborn mouse islets; however, expression was still suppressed as animals aged. CONCLUSIONS—The data suggest that long-range enhancers 5′ or 3′ of the IGRP gene are required for the maintenance of IGRP gene expression in adult mice.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3