Selective IL-2 Responsiveness of Regulatory T Cells Through Multiple Intrinsic Mechanisms Supports the Use of Low-Dose IL-2 Therapy in Type 1 Diabetes

Author:

Yu Aixin1,Snowhite Isaac2,Vendrame Francesco2,Rosenzwajg Michelle345,Klatzmann David345,Pugliese Alberto126,Malek Thomas R.12

Affiliation:

1. Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL

2. Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL

3. Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Biotherapy (CIC-BTi) and Inflammation-Immunopathology-Biotherapy Department (I2B), Paris, France

4. Sorbonne Université, Université Pierre et Marie Curie Univ Paris 06, Unité Mixte de Recherche (UMR)-S 959, Immunology-Immunopathology-Immunotherapy (I3), Paris, France

5. INSERM, UMR-S 959, Immunology-Immunopathology-Immunotherapy (I3), Paris, France

6. Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL

Abstract

Low-dose interleukin-2 (IL-2) inhibited unwanted immune responses in several clinical settings and is currently being tested in patients with type 1 diabetes (T1D). Low-dose IL-2 selectively targets regulatory T cells (Tregs), but the mechanisms underlying this selectivity are poorly understood. We show that IL-2–dependent STAT5 activation in Tregs from healthy individuals and patients with T1D occurred at an ∼10-fold lower concentration of IL-2 than that required by T memory (TM) cells or by in vitro–activated T cells. This selective Treg responsiveness is explained by their higher expression of IL-2 receptor subunit α (IL-2Rα) and γ chain and also endogenous serine/threonine phosphatase protein phosphates 1 and/or 2A activity. Genome-wide profiling identified an IL-2–dependent transcriptome in human Tregs. Quantitative assessment of selected targets indicated that most were optimally activated by a 100-fold lower concentration of IL-2 in Tregs versus CD4+ TM cells. Two such targets were selectively increased in Tregs from T1D patients undergoing low-dose IL-2 therapy. Thus, human Tregs possess an IL-2–dependent transcriptional amplification mechanism that widens their selective responses to low IL-2. Our findings support a model where low-dose IL-2 selectively activates Tregs to broadly induce their IL-2/IL-2R gene program and provide a molecular underpinning for low-dose IL-2 therapy to enhance Tregs for immune tolerance in T1D.

Funder

DIABETES RESEARCH INSTITUTE FOUNDATION

Anton E. B. Schefer Foundation

Peacock Foundation

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 151 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3