Opioid Receptor Blockade Prevents Exercise-Associated Autonomic Failure in Humans

Author:

Milman Sofiya1,Leu James1,Shamoon Harry12,Vele Septimiu1,Gabriely Ilan1

Affiliation:

1. Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, New York

2. Institute for Clinical and Translational Research, Albert Einstein College of Medicine, Bronx, New York

Abstract

Hypoglycemia and exercise both induce the release of β-endorphin, which plays an important role in the modulation of the autonomic response during subsequent events. Because opioid receptor (OR) blockade during antecedent hypoglycemia has been shown to prevent hypoglycemia-associated autonomic failure, we hypothesized that OR blockade during exercise would prevent exercise-associated autonomic failure (EAAF). We studied 8 healthy subjects on 2 consecutive days, each of whom participated in three different studies in random order. The protocol on day 1 involved one of the following: 1) two 90-min hyperinsulinemic-euglycemic clamps plus naloxone infusion (control); 2) two 90-min hyperinsulinemic-euglycemic clamps with exercise at 60% Vo2max, plus naloxone infusion (N+); or 3) same protocol as in the N+ group, but with saline infusion only (N−). On day 2, all were studied with stepped hyperinsulinemic-hypoglycemic clamps, using hormone concentrations and glucose turnover as indicators of hypoglycemia counterregulation. Compared with control, N− studies resulted in significantly blunted epinephrine and norepinephrine responses to subsequent hypoglycemia. Conversely, the N+ group exhibited unimpaired hypoglycemia counterregulation, characterized by appropriate increases in epinephrine, norepinephrine, and endogenous glucose production. Thus, OR blockade with naloxone during antecedent exercise prevents the development of acute EAAF by improving the catecholamine responses and by restoring endogenous glucose production.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3