Studies on Macromolecular Components of Human Glomerular Basement Membrane and Alterations in Diabetes: Decreased Levels of Heparan Sulfate Proteoglycan and Laminin

Author:

Shimomura Hiroyuki1,Spiro Robert G1

Affiliation:

1. Department of Biological Chemistry and Medicine, Harvard Medical School, and the Elliott P. Joslin Research Laboratory Boston, Massachusetts

Abstract

Treatment of human glomerular basement membrane (GBM) with 4 M guanidine HCI resulted in a preferential extraction of noncollagenous components including laminin, fibronectin, entactin, and heparan sulfate proteoglycan, whereas effective solubilization of type IV collagen required exposure to denaturing solvents in the presence of reducing agents. The guanidine HCI–solubilized constituents were identified by immunochemical procedures after resolution by polyacrylamide gel electrophoresis, CL-6B filtration, and DEAE-cellulose chromatography. Two immunologically related heparan sulfate proteoglycans (Mr ∼350,000 and 210,000) were observed by electrophoresis, with the higher-molecular-weight form being predominant. An examination of the two proteoglycans after heparitinase digestion or chemical deglycosylation indicated that heparan sulfate chains and other carbohydrate units are attached to core proteins with Mr ∼140,000 and 110,000, respectively. Radioimmunoassays indicated that human diabetic GBM contained significantly lower (P < .005) amounts of heparan sulfate proteoglycan and laminin with average values that were 30 and 60%, respectively, of nondiabetic controls; the fibronectin content of the diabetic GBM, however, was not significantly different from the normal. These findings, together with previous studies showing increases in GBM collagen, indicate that an alteration in the macromolecular architecture of this basement membrane occurs in diabetes that may be responsible for the filtration defect and the ultimate glomerular occlusion.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 104 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3