Cytosolic Free-Calcium Concentrations in Normal Pancreatic Islet Cells: Effect of Secretagogues and Somatostatin

Author:

Sussman Karl E1,Leitner J Wayne1,Draznin Boris1

Affiliation:

1. Research Service, Veterans Administration Medical Center, and the Department of Medicine, University of Colorado Health Sciences Center Denver, Colorado

Abstract

We have assessed the effect of somatostatin on glucose-, potassium-, forskolin-, and dibutyryl cAMP-induced changes in cytosolic free [Ca2+] in normal rat pancreatic islet cells with the new Ca2+ indicator fura 2. The cytosolic free [Ca2+] in islet cells incubated with nonstimulatory concentrations of glucose (30 mg/dl) ranged from 54 to 64 nM. In the presence of extracellular Ca2+ (1 mM), glucose (300 mg/dl) rapidly increased the cytosolic free [Ca2+] to a level of 90-110 nM. In the absence of extracellular Ca2+, glucose failed to increase the cytosolic free [Ca2+], which remained at a level of 55-60 nM. Somatostatin inhibited glucose-induced increases in cytosolic free [Ca2+] in a dose-dependent manner (maximal inhibition was 34%). Half-maximal inhibition was observed at 10−9 M somatostatin, which correlated well with somatostatin binding to islet cells (Kd = 2.6 × 1010 M). Potassium (50 mM) rapidly increased the cytosolic free [Ca2+] to 110-120 nM, and its effect was not influenced by the presence of somatostatin. Forskolin (20 μM) and dibutyryl cAMP (1 mM) rapidly increased cytosolic free Ca2+ both in the presence and absence of extracellular Ca2+. More than 80% of the overall increase in cytosolic free-Ca2+ levels could be accounted for by the mobilization of intracellular Ca2+ stores. Somatostatin effectively blocked the forskolin effect (32% inhibition) but not the dibutyryl cAMPinduced effect. Somatostatin appears to inhibit secretagogue-induced increases in cytosolic free [Ca2+] by interfering with cAMP production and probably with Ca2+ transport across the cell membrane.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3