Inhibitor of Calmodulin and cAMP Phosphodiesterase Activity in BB Rats

Author:

Solomon S S1,Steiner M S1,Little W L1,Rao R H1,Sanders L L1,Palazzolo M R1

Affiliation:

1. Research and Medical Services, VA Medical Center, and the Departments of Medicine and Pharmacology of the University of Tennessee Center for the Health Sciences Memphis, Tennessee

Abstract

Diabetes mellitus in humans is associated with increased plasma and tissue levels of cAMP and decreased cAMP phosphodiesterase (PDE) activity. Calmodulin (CM) is a low-molecular-weight protein essential for activation of cAMP PDE. The inhibitor (INH) is a low-molecular-weight substance that inhibits the activity of CM in multiple systems, including PDE. Spontaneously diabetic BB rats (SDR) and their nondiabetic littermates (NDR) were used in this study. Holtzman rats were rendered diabetic by streptozocin (STZ). STZ-induced diabetic rats (STZ-DR) and BB rats werestudied with and without the benefit of insulin therapy. Calmodulin was assayed both by bioassay and by specific radioimmunoassay. The inhibitor was bioassayed by its ability to inhibit CM-activated PDE. Results showed that both spontaneous and STZ-induced diabetes are associated with a decrease in activity of the low-Michaelis constant (Km) cAMP PDE in the liver (39%, SDR; 70% STZ-DR). Calmodulin activity was also decreased in the livers of both animals (13%, SDR; 68%, STZ-DR). Similar data were obtained for NDRs. The inhibitor, on the other hand, was increased in the livers of untreated SDRs and STZ-DRs (155%, SDR; 125%, STZ-DR). No change was noted for NDRs. All these changes were restored toward normal after treatment with insulin. These data suggest that in diabetes the defect in the cAMP PDE-CM-INH system is demonstrated in both an environmental model, as illustrated by STZ-DRs, and a genetic model, as shown by SDRs and NDRs. The inhibitor activity, however, is not changed significantly in NDRs. We speculate that the inhibitor activity plays a role in dictating whether the genetic NDR will or will not become clinically diabetic.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3