High Glucose Prolongs Cell-Cycle Traversal of Cultured Human Endothelial Cells

Author:

Lorenzi Mara1,Nordberg Judith A2,Toledo Silva1

Affiliation:

1. Department of Medicine, Division of Endocrinology and Metabolism, University of California San Diego

2. Flow-Cytometry Laboratory, Veterans Administration Medical Center La Jolla, California

Abstract

There is evidence suggesting that the diabetic state adversely affects replication of certain cell populations. We document that exposure to high ambient glucose (20 mM) induces delay in various phases of the cell cycle of human endothelial cells in primary culture. Cells in S phase were labeled with bromodeoxyuridine (an analogue of thymidine), and the cell-cycle position of the labeled cohort was analyzed by flow cytometry at successive time points. The movement of cells exposed to high glucose for 7–8 days was retarded both in S and G2 phases so that the increase in bromodeoxyuridine-positive cells over 24 h was 1.6-fold, versus 2.0-fold in control cultures. In experiments in which mitotic arrest with vinblastine was used to investigate the movement of cells out of G, phase without interference from reentering cells, depletion of the G, compartment was significantly inhibited in cultures grown in high glucose. The effects of chronic high glucose on cell cycle occurred while total protein synthesis was not diminished. Acute exposure to high glucose had no effect on cell-cycle traversal or cell generation time. Cell-cycle abnormalities observed in this study may relate to the DNA damage we have previously observed in endothelial cells exposed to high glucose and, if occurring in vivo, could be of pathogenetic importance for the vascular lesions and teratogenicity of diabetes.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3