Reduction of Diabetes-Induced Oxidative Stress, Fibrotic Cytokine Expression, and Renal Dysfunction in Protein Kinase Cβ–Null Mice

Author:

Ohshiro Yuzuru1,Ma Ronald C.1,Yasuda Yutaka1,Hiraoka-Yamamoto Junko1,Clermont Allen C.1,Isshiki Keiji1,Yagi Kunimasa1,Arikawa Emi1,Kern Timothy S.2,King George L.1

Affiliation:

1. Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts

2. Department of Medicine, Case Western Reserve University, Cleveland, Ohio

Abstract

Diabetes induces the activation of several protein kinase C (PKC) isoforms in the renal glomeruli. We used PKC-β−/− mice to examine the action of PKC-β isoforms in diabetes-induced oxidative stress and renal injury at 8 and 24 weeks of disease. Diabetes increased PKC activity in renal cortex of wild-type mice and was significantly reduced (<50% of wild-type) in diabetic PKC-β−/− mice. In wild-type mice, diabetes increased the translocation of PKC-α and -β1 to the membrane, whereas only PKC-α was elevated in PKC-β−/− mice. Increases in urinary isoprostane and 8-hydroxydeoxyguanosine, parameters of oxidative stress, in diabetic PKC-β−/− mice were significantly reduced compared with diabetic wild-type mice. Diabetes increased NADPH oxidase activity and the expressions of p47phox, Nox2, and Nox4 mRNA levels in the renal cortex and were unchanged in diabetic PKC-β−/− mice. Increased expression of endothelin-1 (ET-1), vascular endothelial growth factor (VEGF), transforming growth factor (TGF)-β, connective tissue growth factor (CTGF), and collagens IV and VI found in diabetic wild-type mice was attenuated in diabetic PKC-β−/− mice. Diabetic PKC-β−/− mice were protected from renal hypertrophy, glomerular enlargement, and hyperfiltration observed in diabetic wild-type mice and had less proteinuria. Lack of PKC-β can protect against diabetes-induced renal dysfunction, fibrosis, and increased expressions of Nox2 and -4, ET-1, VEGF, TGF-β, CTGF, and oxidant production.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 171 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3