T3 Induces Both Markers of Maturation and Aging in Pancreatic β-Cells

Author:

Aguayo-Mazzucato Cristina1,Lee Terence B.1,Matzko Michelle1,DiIenno Amanda2,Rezanejad Habib1,Ramadoss Preeti3,Scanlan Thomas4,Zavacki Ann Marie5,Larsen P. Reed5,Hollenberg Anthony3,Colton Clark2,Sharma Arun1,Bonner-Weir Susan1ORCID

Affiliation:

1. Joslin Diabetes Center, Harvard Medical School, Boston, MA

2. Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA

3. Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA

4. Department of Physiology & Pharmacology, Oregon Health & Science University, Portland, OR

5. Thyroid Section, Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA

Abstract

Previously, we showed that thyroid hormone (TH) triiodothyronine (T3) enhanced β-cell functional maturation through induction of Mafa. High levels of T3 have been linked to decreased life span in mammals and low levels to lengthened life span, suggesting a relationship between TH and aging. Here, we show that T3 increased p16Ink4a (a β-cell senescence marker and effector) mRNA in rodent and human β-cells. The kinetics of Mafa and p16Ink4a induction suggested both genes as targets of TH via TH receptors (THRs) binding to specific response elements. Using specific agonists CO23 and GC1, we showed that p16Ink4a expression was controlled by THRA and Mafa by THRB. Using chromatin immunoprecipitation and a transient transfection yielding biotinylated THRB1 or THRA isoforms to achieve specificity, we determined that THRA isoform bound to p16Ink4a, whereas THRB1 bound to Mafa but not to p16Ink4a. On a cellular level, T3 treatment accelerated cell senescence as shown by increased number of β-cells with acidic β-galactosidase activity. Our data show that T3 can simultaneously induce both maturation (Mafa) and aging (p16Ink4a) effectors and that these dichotomous effects are mediated through different THR isoforms. These findings may be important for further improving stem cell differentiation protocols to produce functional β-cells for replacement therapies in diabetes.

Funder

National Institutes of Health

JDRF

Diabetes Research and Wellness Foundation

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3