Mechanisms of Nicotinamide and Thymidine Protection From Alloxan and Streptozocin Toxicity

Author:

LeDoux Susan P1,Hall Carolyn R1,Forbes Pam M1,Patton Nancy J1,Wilson Glenn L1

Affiliation:

1. Department of Anatomy, University of South Alabama, College of Medicine Mobile, Alabama

Abstract

A common mechanism has been proposed for the β-cell toxins alloxan (ALX) and streptozocin (STZ) involving the formation of single-strand breaks in DNA that lead to the overactivation of the enzyme poly(ADP-ribose) synthetase and the critical depletion of its substrate NAD. If the toxins act via this common mechanism, the poly(ADP-ribose) synthetase inhibitors nicotinamide and thymidine would be expected to affect the formation of DNA single-strand breaks in a similar fashion. To test the effects of these inhibitors, the formation of single-strand breaks in the DNA of insulin-secreting RINr cells was monitored by assessing changes in the supercoiling of nucleoids after exposure to STZ, ALX, or methylnitrosourea (MNU). With the inclusion of nicotinamide or thymidine and STZ or MNU, more single-strand breaks in RINr cell DNA were detected. These results would be expected if nicotinamide and thymidine acted through inhibition of poly(ADP-ribose) synthetase. However, when the inhibitors were used in combination with ALX, fewer single-strand breaks were present. This suggests a reduction in ALX-induced hydroxyl radicals available to interact with DNA. Because nicotinamide has been demonstrated to be a hydroxyl-radical scavenger, the ability of thymidine to scavenge hydroxyl radicals was investigated. Thymidine, like nicotinamide, was found to be a potent scavenger of hydroxyl radicals. Thus, the mechanisms by which nicotinamide and thymidine protect against the toxic effects of STZ or ALX appear different. These findings suggest that the actions of β-cell toxins are more complex than simply the overactivation of a single enzyme.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3