Affiliation:
1. Departments of Ophthalmology, Anatomy and Cell Biology, and Pathology, University of Virginia School of Medicine Charlottesville, Virginia The Wilmer Ophthalmological Institute, The Johns Hopkins Hospital Baltimore, Maryland Department of Cell Biology and Neuroanatomy, University of Minnesota Minneapolis, Minnesota
Abstract
The conversion of glucose to sorbitol by aldose reductase (AR) and its subsequent intracellular accumulation have been implicated in the pathogenesis of diabetic cataracts. There is also evidence linking AR activity with retinal capillary basement membrane thickening in galactosemic rats, suggesting a possible role in diabetic retinopathy. In this study, we explored one feature of this issue by examining diabetic and nondiabetic eyes for immunoreactive AR. AR was immunohistochemically undetectable in the retinal pigment epithelia (RPE) and neural retinas of nondiabetic human eyes. Weak, focal staining for AR was present unilaterally in the RPE of 1 of 11 diabetic patients without pathologic ocular findings and in 43% of diabetic patients with mild ocular findings. Retinal positivity was found (unilaterally) in only 2 of 19 individuals from either of these mildly affected groups. Fifty-five percent of patients with background retinopathy demonstrated AR positivity in the RPE, and half of these expressed AR in the RPE of both eyes. Of the individuals with proliferative diabetic retinopathy, 87.5% showed bilateral staining in the RPE. Retinal positivity was present in 36% of background retinopathy and 75% of proliferative retinopathy cases, demonstrating a positive correlation between AR expression and the severity of the disorder. In weakly staining retinas, only the ganglion cell bodies, nerve fibers, and Müller cells were positive, whereas in intensely staining cases, virtually the entire retina, except for the rod outer segments, was positive. Eyes from patients who had had diabetes ≤6 yr were negative for AR, but those from long-term-diabetic patients (14–45 yr)manifested positivity. These data suggest that enhanced expression of AR may play a role in the development of diabetic retinopathy.
Publisher
American Diabetes Association
Subject
Endocrinology, Diabetes and Metabolism,Internal Medicine
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献